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1. Research Question 3. Goals

Why are expressive speech important in delivering messages? * Increase the flexibility in expression while maintaining the quality of state-of-the-art systems

° conveys meaning, tone, and emotion.

4. Expressive Speech Synthesis

* adds nonverbal cues that build connection and engagement. _ o o _ _
° Inlinguistics, expressivity may change the choice of words or syntactic structures.

* clarifies key points and highlights important ideas. - _ o _ |
° In acoustics, it impacts various characteristics like energy, pitch, duration, etc.

° captures attention and keeps listeners involved.
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Flexible and appropriate rendering of expressivity in a synthetic voice is still Expression
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°* making a voice sound happy or subdued, friendly or empathic, “I study at IIT....” -
authoritative or uncertain is beyond what can be done today.

5. Methods

* Propose a high-quality and expressive multi-speaker TTS model, which
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can flexibly synthesize speech with the style extracted from a target
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* Used a non-autoregressive Mel-spectrogram prediction model (i.e.,
FastSpeech?2), which has demonstrated improved speed and robustness

Energy

compared to traditional autoregressive models.
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* Figures show the example of generated speech from the reference speaker.
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spectrogram.

°* Based on the losses, model is performing well on the training and validation data.

8. Conclusion and Future work

°* Propose an expressive TTS model to generate various styles of speech of multiple speakers.

6. Experimental conditions * Confirmed through experiments that our model synthesize high-quality spectrogram given the reference

audios from both parallel and non-parallel speakers.

Datasets * We will evaluate subjective naturalness of synthesized speech

* LibriTTS dataset contains 110 hours speech with 1151 reading-style * We will extend the TTS model to more languages and Enable multi-lingual speech style transfer

speakers. We convert the speech sampling rate to 16KHz.
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° use 12.5ms hop size, 50ms window size to extract mel-spectrogram.

° convert text into phoneme using grapheme-to-phoneme conversion and

take phoneme as the encoder input.
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°* The phoneme discriminator consist of fully connected layers.
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