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1. Introduction
* Speech synthesis is the computer generated human speech. o

 Hypothesis
« Continuous vocoder can be improved by introducing a better NLP

| — Sound source
voiced: pulse o
urvaiced: noise

fundamental
frequency

y 4 solutions with low level synthesis.
» Key factors for quality degradation of speech &7 | concenty .
synthesis "BERE : « Goal of this paper
» Parametric vocoder (speech analysis & synthesis) 'j_f_j:f:;_:_}  Builld a deep learning for Text-to-Speech (TTS) synthesis using
* Acoustic modeling accuracy _— Tl L1000 0 AR 1 feedforward and recurrent neural networks as an alternative to
« Over-smoothing (sounds muffled) 5| s 1 hidden Markov models (HMMs) which often generate over-
< e s smoothing and muffled synthesized speech.

Develop a voice conversion system with simple model based neural
network to convert the speech signal of a source speaker (e.g. male)
Into that of a target speaker (e.g. female).

 Vocoder problems
* buzziness
* real-time processing

2. Methods

 Feed-Forward Deep Neural Network (FFD-NN)
« 6 feed-forward hidden lower layers of 1024 units each, performs

P

air flow

Figure 1. Human speech synthesis.

Recurrent hidden units

* non-linear function of the previous layer’s representation, [ FO |[MVF] I\/IGCJ] — > F0 MVE. MGG
* linear activation function at the output layer. S S [ generation J
= = _
c y(x)=f (Z Wijx; + b; ) [ Continuous J % o'
. minimi g £ on b g dicti ~ features extraction = > [ Continuous J
Inimize mean squared error function between target y and prediction output y F 3 g synthesis
1 A~ — —
+ E==-3" 10 —9i)° — — = 3
.t . L . SPEECH < S
 applied a hyperbolic tangent activation function DATABASE = = Speech waveform
* lower error rates and faster convergence — —
_J &7 J 9 o 5 U
= S = 2 s 2
» Recurrent Neural Network (RNN) 5 2 5 2 5 2
. . . 2 o = =
+ 4 feed-forward hidden lower layers of 1024 units each, followed by a single F 2 g = 5 2
. . QD QO
top layer with 512 units as: ? 5 ? 3 T s
* Long short-term memory (LSTM) = ™ 7
* Bidirectional LSTM (B-LSTM) Figure 2. Workflow of the DNN/RNN based TTS system.
« Gated recurrent unit (GRU)
* The iterative process of, for example, the BI-LSTM can be defined as =
— — l
* hh=f (szxt + Wrphe1 + bﬁ) SIS o ) R
- - \ LN —
* hy=f (Wxﬁxt + Weghe—1 + bﬁ) parameteriation [~ | Sy, | parameterization
* Y = W}_{yht + Wﬁyht + by Source data . \__ "7 - Target data
MGC MGC
* \Voice Conversion based DNN
» consists of feature processing, training and conversion-synthesis steps. contFQ | H

Continuous ' ‘
Synthesis ] 4"

Converted speech

* using the analysis function of the Continuous vocoder. / J | Converted MVF
» FF-DNN is applied to construct the conversion phase. Bl
* Dynamic Time Warping (DTW) algorithm is applied to map the training features

» source speaker to the corresponding of the target speaker.

Test utterance

 MVF, contFO, and MGC parameters are extracted from source and target voices et I Continuous | ﬂ El Conversion “_>ﬁ E[
. Parameterization function
ST —

Figure 3. Voice conversion process with Continuous based waveform generation.

3. Objective evaluation 4. Perceptual evaluation

« Data: from CMU-ARCTIC * Multi-Stimulus test with Hidden Reference and Anchor (MUSHRA).
« AWB (Scottish English, male), JMK (Canadian English, male), SLT (American « 20 participants (mean age: 38 years) with engineering background.
English, female), and BDL (American English, male).  rate from O (highly unnatural) to 100 (highly natural).
* each one consisting of 1132 sentences. * samples:
« 90% of these sentences were used in the training experiment, while the rest * http://smartlab.tmit.ome.hu/vc2019

were used for testing and evaluating.  http://smartlab.tmit.ome.hu/vocoder2019

* Training procedures were conducted on an NVidia Titan X GPU.

100 1 Benchmark B RNN
. =] DNN EEN BLSTM

« Empirical measures , 8oF 1

« Mel-Cepstral Distortion Figure 4. Results of the .

* Root mean squared error it;?d?;t;]veesse\&aﬂg;t;gg for the E 60 | r"“

* The correlation measures Higher value means larger S 0l }”

« frequency-weighted segmental SNR naturalness. 2 } ‘

« Normalized Covariance Metric = olr—= -

« Log Spectral Distortion 4344 "““

* Weighted spectral slope 0

L_L a)Target
b} Source

—L_ a) Target
b} Source

— )} W (baseline)
s d) VC (proposed)

— ) VC (baseline)

Table 2. Objective measures for all training based VC systems. m d) VC (proposed)
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Error metrics Model | SLT-to-BDL |BDL-to-SLT | SLT-to-JMK | JMK-to-SLT 0 | - ¢ A0 =
MCD Reference 5.624 5.355 5.856 5.765 w0 : w0
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Table 1. Objective measures for all training based TTS systems. 8 Y] . g
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