

anna Bio-

LP Synth Filter: Linear Prediction Synthesis Filter

Infocommunication Speech Processing

Dr. Mohammed Salah Al-Radhi

Dr. Tamás Gábor Csapó

malradhi@tmit.bme.hu

Copyright

 This lecture material was created by Tamás Gábor CSAPÓ from the Budapest University of Technology and Economics. Using the materials without explicit permission is considered copyright infringement.

SPEECH PROCESSING, SPEECH TECHNOLOGY

Speech

- the most natural form of human-human communications
- related to language; linguistics is a branch of <u>social science</u>
- related to human physiological capability; physiology is a branch of <u>medical science</u>
- also related to sound and acoustics, a branch of <u>physical</u> <u>science</u>
- one of the most intriguing signals that humans work with every day

Speech processing

- Purposes:
 - to understand speech as a means of communication
 - to represent speech for transmission and reproduction
 - to analyze speech for automatic recognition and extraction of information
 - to discover some physiological characteristics of the talker

Speech technology

The Speech Chain

Source: Rabiner (2015) http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/speech%20course.html

Speech coding

- **Speech Coding** is the process of transforming a speech signal into a representation for efficient transmission and storage of speech
 - narrowband and broadband wired telephony
 - cellular communications (e.g. GSM, UMTS)
 - Voice over IP (VoIP) to utilize the Internet as a real-time communications medium
 - extremely narrowband communications channels, e.g., battlefield applications using HF radio
 - storage of speech for telephone answering machines, IVR systems, prerecorded messages

Information Rate of Speech

- from a Shannon view of information
 - message content/information--2**6 symbols (phonemes) in the language; 10 symbols/sec for normal speaking rate => 60 bps is the equivalent information rate for speech
- from a communications point of view
 - speech bandwidth is between 4 (telephone quality) and 8 kHz (wideband hi-fi speech)—need to sample speech at between 8 and 16 kHz, and need about 8 (log encoded) bits per sample for high quality encoding => 8000x8=64000 bps (telephone) to 16000x8=128000 bps (wideband)

Information Rate of Speech

- from a Shannon view of information
 - message content/information--2**6 symbols (phonemes) in the language: 10 symbols/sec for normal speaking rate => 60 hps is the equiving 1000-2000 times change in information rate from discrete message symbols to waveform encoding => can we achieve
- from a this three orders of magnitude reduction in information rate
 - spee on real speech waveforms?

łz

(wideband hi-fi speech)—need to sample speech at between 8 and 16 kHz, and need about 8 (log encoded) bits per sample for high quality encoding => 8000x8=64000 bps (telephone) to 16000x8=128000 bps (wideband)

Speech production mechanism

Source-filter model

Linear Predictive Coding (LPC)

- LPC methods provide extremely accurate estimates of speech parameters, and does it extremely efficiently
- Basic idea of Linear Prediction: current speech sample can be closely approximated as a linear combination of past samples, i.e.,

$$s(n) = \sum_{k=1}^{p} \alpha_k s(n-k)$$
 for some value of p, α_k 's

LPC methods /1

• for periodic signals with period Np, it is obvious that

 $s(n) \approx s(n - N_p)$

- but that is not what LP is doing; it is estimating s(n) from the p (p << Np) most recent values of s(n) by linearly predicting its value
- for LP, the predictor coefficients (the αk 's) are determined (computed) by *minimizing the sum of squared differences* (over a finite interval) *between the actual speech samples and the linearly predicted ones*

LPC methods /2

- LP is based on speech production and synthesis models
 - speech can be modeled as the output of a linear, timevarying system, excited by either quasi-periodic pulses or noise;
 - assume that the model parameters remain constant over speech analysis interval

LPC examples

- Waveform coding
 - Original (64 kbps)
 - ADPCM (32 kbps)

- Linear Predictive Coding
 - CELP (4800 bps)
 - LPC-10 (2400 bps)

Text-to-speech synthesis

- Synthesis of Speech is the process of generating a speech signal using computational means for effective human-machine interactions
 - machine reading of text or email messages
 - telematics feedback in automobiles
 - talking agents for automatic transactions
 - announcement machines that provide information such as stock quotes, airlines schedules, weather reports, etc.
 - screen reader for the blind
 - speech communication help for the speaking impaired

Text-to-speech (TTS)

Speech synthesis - history

- 1939, "Voder" electromechanical system
- https://www.youtube.com/watch?v=0rAyrmm7vv0

Formant synthesis

http://www.speech.kth.se/wavesurfer/formant/

Diphone concatenation

Unit selection /1

Unit selection /2

Speech synthesis samples

• Formant synthesis ('70s)

• Diphone concatenation ('80s)

- Unit selection ('90s)
- Statistical speech synthesis (2005-)

Pattern Matching Problems

- speaker verification
- word spotting
- automatic indexing of speech recordings

Automatic Speech Recognition

- Recognition of Speech is the process of extracting usable linguistic information from a speech signal in support of human-machine communication by voice
 - command and control (C&C) applications, e.g., simple commands for spreadsheets, presentation graphics, appliances
 - voice dictation to create letters, memos, and other documents
 - natural language voice dialogues with machines to enable Help desks,
 Call Centers
 - voice dialing for cellphones and from PDA's and other small devices

Speaker verification, recognition

- Speaker Verification
 - secure access to premises, information, virtual spaces
- Speaker Recognition
 - legal and forensic purposes national security; also for personalized services

Voice conversion

 Transform the speech of a (source) speaker so that it sounds like the speech of a different (target) speaker.

Stages of Voice Conversion

1) Analysis, 2) Learning, 3) Transformation

• Key Parameter: the spectral envelope (relation to timbre)

Voice conversion examples

	Source	Target	GMM	DFWA	DFWE
slt → clb (FF)					
bdl \rightarrow clb (MF)				4	

PERCEPTUAL CODING OF AUDIO SIGNALS

Apple iPod

- stores music in MP3, AAC, MP4, wma, wav, ... audio formats
- compression of 11-to-1 for 128 kbps MP3
- can store order of 20,000 songs with 30 GB disk
- can use flash memory to eliminate all moving memory access
- can load songs from iTunes store more than 1.5 billion downloads
- tens of millions sold

$$\begin{array}{c|c} \text{Memory} & x[n] \\ \hline & \text{Computer} \end{array} & \begin{array}{c} y[n] \\ \hline & \text{D-to-A} \end{array} & \begin{array}{c} y_c(t) \\ \hline & y_c(t) \\ \hline & \end{array} \end{array}$$

Compression

- High data rates, such as CD audio (4.32 Mb/s), are incompatible with internet & wireless applications.
- Audio data must somehow be compressed to a smaller size (less bits), while not affecting signal quality (minimizing quantization noise).
- **Perceptual Audio Encoding** is the encoding of audio signals, incorporating psychoacoustic knowledge of the auditory system, in order to reduce the amount of bits necessary to faithfully reproduce the signal.
 - MPEG-1 Layer III (aka mp3)
 - MPEG-2 Advanced Audio Coding (AAC)

Perceptual coding

• Goal: compress audio (e.g. music) without quality loss

- Use properties of hearing
 - Critical bands
 - Hearing limitations
 - Masking
 - Time domain
 - Frequency comain

Subband coding

- Analysis filter bank, M bandpass filters
- Quantize separately in different bands
 - quantization noise stay within band; gets masked

MP3

MP3 Bit Rate vs. Audio Quality

www.xeport.com	
	Song: You Are Number One
	Bit Rate: 320kbps CBR
	File Size: 1168kB
	Sampling Rate: 44100Hz
	Bit Depth: 32 bits

The END

LP Synth Filter: Linear Prediction Synthesis Filter

Infocommunication Speech Processing

Dr. Mohammed Salah Al-Radhi Dr. Tamás Gábor Csapó