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Transfer Learning & Pretrained Networks
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Motivation
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• Lots of data, time, resources needed to train and tune a neural network from scratch

• An ImageNet deep neural networks can take weeks to train and fine-tune from scratch.

• Unless you have 256 GPUs, possible to achieve in 1 hour

➢ Cheaper, faster way of adapting a neural network by 

exploiting their generalization properties!



What is Transfer Learning?
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• It is the process of training a model on a large-scale dataset and then using that pretrained model to 

conduct learning for another downstream task (i.e., target task).

• OR, Transferring the knowledge of one model to perform a new task.



Traditional vs. Transfer Learning

7https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.147.9185&rep=rep1&type=pdf



Transfer Learning
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In TL, we are typically working with two datasets:

❑ Source dataset, that typically contains a large amount of data

❑ Target dataset, that is typically smaller, and contains classes that do not appear 

in the source dataset



Transfer Learning
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In TL, we are typically working with two datasets:

❑ Source dataset, that typically contains a large amount of data

❑ Target dataset, that is typically smaller, and contains classes that do not appear 

in the source dataset

Can we use the information in the source dataset to 

improve classification accuracy on the target dataset?



Freezing and Fine-tuning

10https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

1. Start with pre-trained network

2. Partition network into:

o Featurizers: identify which layers to keep

o Classifiers: identify which layers to replace

3. Re-train classifier layers with new data

4. Unfreeze weights and fine-tune whole network with smaller 

learning rate

Process



Transfer Learning with CNNs
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1. Train on 

Imagenet



Transfer Learning with CNNs
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1. Train on 

Imagenet

2. Small dataset:

feature extractor

Freeze these

Train this



Transfer Learning with CNNs
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1. Train on 

Imagenet

3. Medium dataset:

finetuning

more data = retrain more of 

the network (or all of it)

2. Small dataset:

feature extractor

Freeze these

Train this

Freeze these

Train this

tip: use only ~1/10th of the 

original learning rate in 

finetuning top layer, and 

~1/100th on intermediate 

layers



When and how to fine-tune?
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Suppose we have model A, trained on dataset A

Q: How do we apply transfer learning to dataset B to create model B?



When and how to fine-tune?

15https://cs231n.github.io/transfer-learning/

Suppose we have model A, trained on dataset A

Q: How do we apply transfer learning to dataset B to create model B?



Why use pretrained models?

• Cost 
• Development

• OpenAI GPT-4: $100 million1 (~36 milliád HUF)
• Meta Llama 2: $20 million2 (~8 milliárd HUF)

• Training 1 model
• Stable Diffusion: $50k3 (18 millió HUF)
• DINOv2: $50k12k (~4 millió HUF)

• ViT-L/14 on ImageNet-22k 
• 96 A100 GPUs, 3.3 days4

• Data

• Adding new tasks
• Lifelong learning
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1 https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
2https://www.promptengineering.org/how-does-llama-2-compare-to-gpt-and-other-ai-language-models/
3https://www.mosaicml.com/blog/stable-diffusion-2
4https://github.com/facebookresearch/dinov2
Kép: Freepik AI Image Generator
https://www.mosaicml.com/blog/mosaicbert

https://www.wired.com/story/openai-ceo-sam-altman-the-age-of-giant-ai-models-is-already-over/
https://www.promptengineering.org/how-does-llama-2-compare-to-gpt-and-other-ai-language-models/
https://www.mosaicml.com/blog/stable-diffusion-2
https://github.com/facebookresearch/dinov2
https://www.freepik.com/ai-images-editor
https://www.mosaicml.com/blog/mosaicbert


Which is the Fastest Image Pretrained Model
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The top-1 and top-5 accuracy refers to the model's performance 

on the ImageNet validation dataset

● Depth refers to the topological depth 

of the network. This includes 

activation layers, batch normalization 

layers etc.

● Depth counts the number of layers 

with parameters.



Approaches to using pretrained networks

Prompting
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Fixed feature 
extractor

Fine tuning Side-tuning Adapters

Figure from: Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M., & Gelly, S. (2019). 
Parameter-Efficient Transfer Learning for NLP. In Proceedings of the 36th International Conference on Machine Learning (pp. 2790–2799). PMLR.
More reading on side tuning: http://sidetuning.berkeley.edu/

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
http://sidetuning.berkeley.edu/


Approaches to using pretrained networks

Prompting
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Fixed feature 
extractor

Fine tuning Side-tuning Adapters



Approaches to using pretrained networks

• Fixed feature extractor
+ Memory, compute efficient

+ No forgetting

+ Multi-use feature extractor

- Lack of flexibiltiy

• Fine tuning
+ Flexible

+ Usually better accuracy

- Forgetting, catastrophic forgetting
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Transfer Learning Applications
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➢ Image classification (most common): learn new image classes

➢Text sentiment classification

➢Text translation to new languages

➢Speaker adaptation in speech recognition

➢Question answering



Generative Adversarial Networks
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What is GANs ..?
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Generator v.s. Discriminator
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GAN’s Architecture
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Training Generator
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Generative modelling
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Why is it worth to deal with generative models?
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Training Discriminator
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Discriminative modelling
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Adversarial Net



Adversarial Training
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Generator v.s. Discriminator
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Advantages of GANs
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Why use GANs for Generation?
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Magic of GANs …



Single Image Super-Resolution
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Magic of GANs …



Predicting the next video frame
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iGAN (interactive)
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iGAN (interactive)
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Image-to-image transformation



42

Forrás: https://openai.com/blog/generative-models/

VAE learning to generate images (log time)
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GAN and art



44

Drawing to image
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Text-To-Image / GAN: flowers
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CycleGAN: unpaired image-to-image translation
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StarGAN: img-to-img translation
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StarGAN: img-to-img translation with a single model



Problems with GANs
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Summary
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Please, don’t forget 
to send feedback:

https://bit.ly/bme-dl
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https://bit.ly/bme-dl


Thank you 
for your attention
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