Deep Learning

End-to-End Automatic Speech Recognition

Dr. Mohammed Salah Al-Radhi (slides by: Dr. Peter Mihajlik)

BME-VIK-TMIT

Copyright

Copyright © Mohammed Salah Al-Radhi, All Rights Reserved.

This presentation and its contents are protected by copyright law. The intellectual property contained herein, including but not limited to text, images, graphics, and design elements, are the exclusive property of the copyright holder identified above. Any unauthorized use, reproduction, distribution, or modification of this presentation or its contents is strictly prohibited without prior written consent from the copyright holder.

No Recordings or Reproductions: Attendees, viewers, and recipients of this presentation are expressly prohibited from making any audio, video, or photographic recordings, as well as screen captures, screenshots, or any form of reproduction, of this presentation, its content, or any related materials, whether during its live presentation or subsequent access. Violation of this prohibition may result in legal action.

For permissions, inquiries, or licensing requests, please contact: malradhi@tmit.bme.hu

Unauthorized use, distribution, or reproduction of this presentation may result in civil and criminal penalties. Thank you for respecting the intellectual property rights of the copyright holder.

Outline

- 1. Introduction to ASR (Automatic Speech Recognition)
- 2. Speech-To-Text (STT) as a Seq2Seq task
- 3. Audio feature extraction
- 4. Training/Pre-training + Fine tuning
- 5. SOTA Architectures, results
- 6. Tools/Practice with NVIDIA NeMo

Introduction to ASR

What is ASR?

• Speech-To-Text (STT): acoustic pressure(time) signal) → text transcription

- Speaker recognition/diarization/verification
- Speech diagnostics
- Speech emotion recognition
- Etc.

Auxiliary information

How is ASR related to deep learning?

Early attempts: limited success

- 1952, Bell Lab, Audrey
- 1961, IBM, Shoebox

First practical ASR systems: statistics and machine learning (HMM, GMM)

1975 CMU, IBM, ... (Baker, Bahl, Jelinek) – 2010

Breakthrough: 2011, Florence Interspeech

Microsoft "Rosetta-stone"

Frank Seide et al

Deep Neural nets for acoustic modeling

Deep learning is ASR

End-to-end approach (/almost/ purely deep neural network)

Speech-To-Text (STT/ASR) as a Seq2Seq task

ASR with S2S

- Encoder-Decoder structures
 - Conv1D (NVIDIA Jasper/QuartzNet)
 - RNN (DeepSpeech)
 - Transformer (SOTA: Google Conformer, META wav2vec2, OpenAI Whisper)
- Special loss function: CTC
 - Why we need it: time alignment problem

Listen-Attend-Spell (LAS) model

• Alternative to CTC alignment is best practice: attention + CTC (Watanabe et al)

T structures

RNN-T (Alex Graves): RNN-Transducer

Conformer-T, Transformer-T, ...

Audio Feature Extraction

Mel-Spectrogram

Feature extraction with Conv1D

Wav2vec 2.0 Latent Feature Encoder

jonathanbgn.com

https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html

Why and how?

- Multitude of pre-trained models
- Just not what you really need ...
- Training from scratch?
 - At least 200 hours but 2k or 20k performs significantly better
 - Needs lot of GPU's (multi GPU, multi node PyTorch DDP at least...)
- Transfer learning?! Yes!

- Always use pre-trained model + fine-tuning!
 - Data efficient: fine-tuning works even for 1 hours of supervised data

(Pre-)/(post-) training

- Pre-training:
 - Supervised (audio + exact transcription)
 - Weakly supervised (audio + edited/simplified transcription)
 - Self-supervised (audio only!)
- "Post training": noisy student training on ASR pseudo labels
- "ASR" augmentations:
 - SpecAugment (2019)
 - Speed perturbation

State of The Art

Conformer

/as encoder with a light decoder/

Transformer, Self-attention + Convolution + FF

Google

Whisper: Encoder + decoder transformer

Weak supervision = not exact transcriptions

- Multilingual, multitask learning
- Language ID
- Punctualization

BUT

- Slowww...
- Non-streamable
- "Input audio is split into 30second chunks"→ latency
- Non-English Accuracy?

Case-study

Hungarian ASR on studio quality spontaneous and read/repeated speech

Experimental data (Hungarian)

Table 1: Main characteristics of data sets used in the experiments.

	HGC SPOK	train-114	dev-repet	BEA-Base dev-spont	eval-repet	eval-spont	CV test
Length [hours]	-	71.2	0.65	4.02	0.95	4.91	6.8
Num of speakers	-	114	10	10	16	16	220
Num of segments	-	76 881	568	4 893	858	5 693	4 871
Num of characters	516.84M	3.1M	28 467	154 994	43 448	197 738	250 709
Num of words	56.13M	0.56M	4 110	27 939	6 229	35 178	35 485
3-gram PPL	-	-	924	771	846	857	2 387
OOV rate [%]	-	-	1.6	1.9	1.4	1.7	3.1
	LM training		AM training	5		Evaluation	

Evaluation Metrics

Accuracy

English/Hungarian : Word Error Rate (WER) Mandarin: Character Error Rate (CER)

S: Substitution. D: Deletion I: Insertion C: Correct N: Total numbers of characters, N = S + D + C

• Real-time Factor (RTF)

 $WER(CER) = \frac{S+D+I}{N} * 100\%$

$$RTF = \frac{T_{process}}{T_{audio}}$$

If RTF < 1, indicating the system can transcribe faster than real-time.

N-gram Language Model (LM)

• Language Model (LM)

A statistical model used to predict the likelihood of a sequence of words.

• N-gram

An N-gram refers to a continuous sequence of N items.

Transcribe spoken words by predicting the most likely word sequences.

Training from scratch vs. cross-lingual transfer learning

Conformer – NVIDIA NeMo implementation, supervised pre-training

From scratch, supervised end-to-end ASR with convolutional/Conformer acoustic models

Structure/ LM CV num of eval-repet eval-spont parameters 26.70 QuartzNet 11.56 26.83 15x3 / 12.7M 3-gram 6.86 **Conformer-**12.73 25.31 49.8 Small / 13M 7.98 22.78 42.7 6-gram **Conformer-**10.98 24.93 49.8 Medium / 30M 5.65 21.01 42.9 6-gram

WER[%] results on BEA-Base (starting from scratch)

QuartzNet (baseline)

Supervised pre-training* (En) + fine-tuning (Hu)

QuartzNet (baseline) 15x5 (18M) based transfer learning WER[%] results on BEA-Base

Pre-training data size [hours]	LM	eval-repet	eval-spont	CV
	_	10.63	24.87	_
	3-gram	5.83	25.23	—

Conformer Small (13M) / Large (121M) transfer learning WER[%] results on BEA-Base

~10k	–	11.22	21.39	40.8
	6-gram	4.96	17.77	34.8
	–	5.2	17.24	34.8
	6-gram	3.66	16.25	30.8

End-to-end deep learning approach – weakly-supervised training

Whisper in zero-shot and fine-tuning setups

Whisper results: zero-shot vs. fine-tuning

- (Pre-)training data size: 680k hours
- Num of languages: 97
- Composition: 83% English ... 0.03% Hungarian

Whisper Medium/Large_v2 WER [%] results of BEA-Base

Model	Fine-tuning	Num of parameters	eval-repet	eval-spont	CV
Whisper-Medium	_	769M	22.33	38.67	27.6
Whisper-Large	_	1550M	18.04	32.76	20.4
Whisper-Medium	Decoder (456M)	769M	4.90	20.60	27.9
Whisper-Large	Decoder (906M)	1550M	4.37	18.69	23.7

End-to-end deep learning approach – self-supervised pre-training

Transcription-free SSL pre-training + wav2vec2 encoder + attentional decoder

Self-Supervised Pre-training based Transfer Learning

- SSL pre-training
- All pre-trained models are downloaded from HuggingFace
 - wav2vec2-large-lv60: LibriVox (English)
 - wav2vec2-large-xlsr-53: CommonVoice + BABEL + Multilingual LibriSpeech
 - wav2vec2-xls-r-300m: CV + BABEL + MLS + VoxPopuli + VoxLingua107 (0.04% Hungarian)
 - wav2vec2-mms-300: MMS-lab-U + VoxPopuli + ... (Massively multilingual incl. Hungarian)

....

• wav2vec2-uralic: VoxPopuli (3 languages, 41% Hungarian)

Context

representations

Quantized

Latent speech representations

representations ${\cal Q}$

raw waveform \mathcal{X}

С

 \mathcal{Z}

 y_i

- Loss: CTC + NLL
- Decoder: GRU
- Encoder: wav2vec2.0large, 300M
- LM: –/Transformer

Wav2vec2 (SSL)-based Transfer Learning Results

wav2vec2-large+GRU+CTC+Attention+BPE_600 based transfer learning WER[%] results on BEA-Base

Model	SSL Pre- training languages	Pre-training data size [hours]	LM	eval-repet	eval-spont	CV
wav2vec2-large-lv60	1*	53k	_	8.46	19.17	36.5
wav2vec2-large-xlsr-53 wav2vec2-xls-r-300m wav2vec2-mms-300	53 128 1406	56k 440k 491k		5.81 6.16 6.56	16.62 15.61 18.82	34.2 30.5 34.9
wav2vec2-uralic	3**	42k	_ Transformer	4.24 2.42	11.55 10.50	21.3 17.2

* = English

** = Estonian + Finnish + Hungarian

Wav2vec2 (SSL)-based Transfer Learning Results

wav2vec2-large+GRU+CTC+Attention+BPE_600 based transfer learning CER[%] results on BEA-Base

Model	SSL Pre- training languages	Pre-training data size [hours]	LM	eval-repet	eval-spont	CV
wav2vec2-large-lv60	1*	60k	_	2.6	5.9	11.2
wav2vec2-large-xlsr-53 wav2vec2-xls-r-300m wav2vec2-mms-300	53 128 1406	56k 440k 491k	 	2.1 2.4 2.2	5.5 5.1 5.8	10.5 8.6 9.1
wav2vec2-uralic	3**	42k	– Transformer	1.7 0.7	3.7 3.3	5.8 4.5

* = English

** = Estonian + Finnish + Hungarian

Final comparison – with respect to RTF

Best of Conformer vs. Wav2vec2 vs. Whisper

Best ASR results on spontaneous Hungarian (without LM) vs. inference times

Relative inference times on an RTX A6000 GPU

/Word Error Rate: the lower the better/

/Real-Time Factor: the lower the better/

Recommended end-to-end ASR tools

TTTESPnet

SpeechBrain

Whisper

- <u>https://github.com/espnet/</u>
- <u>https://github.com/facebookresearch/fairseq</u>
- <u>https://github.com/k2-fsa/k2</u>
- <u>https://github.com/lhotse-speech/lhotse</u>
- <u>https://speechbrain.github.io/</u>
- <u>https://github.com/openai/whisper</u>
- <u>https://github.com/NVIDIA/NeMo</u>
- <u>https://github.compenet-e2e</u> **DVIDIA**. NEMO

FAIRSEO

LHOTSE

References

- <u>Stanford Lecture on ASR</u>
- "An Intuitive Explanation of Connectionist Temporal Classification"
- Explanation of CTC with Prefix Beam Search
- Listen Attend and Spell Paper (seq2seq ASR model)
- Explanation of the mel spectrogram in more depth
- Jasper Paper
- QuartzNet paper
- <u>SpecAugment Paper</u>
- Explanation and visualization of SpecAugment
- <u>Cutout Paper</u>
- <u>Transfer Learning Blogpost</u>

Please, don't forget to send feedback: https://bit.ly/bme-dl

Thank you for your attention

Dr. Mohammed Salah Al-Radhi malradhi@tmit.bme.hu

(slides by: Dr. Peter Mihajlik)

05 November 2024

