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Outline

•1. Introduction to ASR (Automatic Speech Recognition)

•2. Speech-To-Text (STT) as a Seq2Seq task

•3. Audio feature extraction

•4. Training/Pre-training + Fine tuning

•5. SOTA Architectures, results

•6. Tools/Practice with NVIDIA NeMo
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Introduction to ASR
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• Speech-To-Text (STT): acoustic pressure(time) signal) → text transcription

• Speaker recognition/diarization/verification

• Speech diagnostics

• Speech emotion recognition

• Etc.

What is ASR?

• Speech-To-Text (STT): acoustic pressure(time) signal) → text transcription

• Speaker recognition/diarization/verification

• Speech diagnostics

• Speech emotion recognition

• Etc.
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Early attempts: limited success
• 1952, Bell Lab, Audrey

• 1961, IBM, Shoebox

First practical ASR systems: statistics and machine learning (HMM, GMM)
• 1975 CMU, IBM, … (Baker, Bahl, Jelinek) – 2010

Breakthrough: 2011, Florence Interspeech

Microsoft „Rosetta-stone”

Deep Neural nets for acoustic modeling

How is ASR related to deep learning?
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• „Classic” approach (HMM-DNN hybrid)

• End-to-end approach (/almost/ purely deep neural network) 

Deep learning is ASR
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Speech-To-Text (STT/ASR) as a Seq2Seq task
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ASR with S2S

• Encoder-Decoder structures
• Conv1D (NVIDIA Jasper/QuartzNet)

• RNN (DeepSpeech)

• Transformer (SOTA: Google Conformer, META wav2vec2, OpenAI Whisper) 

• Special loss function: CTC
• Why we need it: 

time alignment problem
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Listen-Attend-Spell (LAS) model

• Alternative to CTC alignment best practice: attention + CTC (Watanabe et al) 
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T structures

11

RNN-T (Alex Graves): RNN-Transducer Conformer-T, Transformer-T, …



Audio Feature Extraction
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Mel-Spectrogram
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Feature extraction with Conv1D
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https://jonathanbgn.com/2021/09/30/illustrated-wav2vec-2.html



ASR training
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Why and how?

• Multitude of pre-trained models

• Just not what you really need …

• Training from scratch?
• At least 200 hours but 2k or 20k performs significantly better

• Needs lot of GPU’s (multi GPU, multi node – PyTorch DDP at least…)

• Transfer learning?! Yes! 

• Always use pre-trained model + fine-tuning!
• Data efficient: fine-tuning works even for 1 hours of supervised data

16

• https://huggingface.co/   
• https://catalog.ngc.nvidia.com/
• https://modelzoo.co/
• …

https://catalog.ngc.nvidia.com/
https://catalog.ngc.nvidia.com/
https://modelzoo.co/


(Pre-)/(post-) training

• Pre-training:
• Supervised (audio + exact transcription)

• Weakly supervised (audio + edited/simplified transcription)

• Self-supervised (audio only!)

• „Post training”: noisy student – training on ASR pseudo labels

• „ASR” augmentations: 
• SpecAugment (2019) 

• Speed perturbation

• …
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State of The Art
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Conformer

/as encoder with a light decoder/

Transformer, 
Self-attention + Convolution + FF
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Weak supervision = 
not exact transcriptions

• Multilingual, multitask learning

• Language ID

• Punctualization

BUT

• Slowww…

• Non-streamable

• „Input audio is split into 30-
second chunks”→ latency

• Non-English Accuracy? 

Whisper: Encoder + decoder transformer

20



Wav2vec2.0: transformer encoder

Self-supervised pre-training: no labels are needed
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Case-study
Hungarian ASR on studio quality spontaneous and read/repeated speech
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Experimental data (Hungarian) 

LM training AM training Evaluation
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Evaluation Metrics

• Accuracy

English/Hungarian : Word Error Rate (WER)      
Mandarin: Character Error Rate (CER)

S: Substitution.  D: Deletion   I: Insertion   C: Correct
N: Total numbers of characters, N = S + D + C

• Real-time Factor (RTF)

If RTF < 1, indicating the system can transcribe faster than real-time.
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N-gram Language Model (LM)
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Training from scratch
vs. cross-lingual transfer learning
Conformer – NVIDIA NeMo implementation, supervised pre-training
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From scratch, supervised end-to-end ASR 
with convolutional/Conformer acoustic models

WER[%] results on BEA-Base (starting from scratch)

Structure/

num of 

parameters

LM eval-repet eval-spont CV

QuartzNet

15x3 / 12.7M

– 11.56 26.70 –

3-gram 6.86  26.83 –

Conformer-

Small / 13M

– 12.73 25.31 49.8

6-gram 7.98 22.78 42.7

Conformer-

Medium / 30M

– 10.98 24.93 49.8

6-gram 5.65 21.01 42.9

QuartzNet (baseline)
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Supervised pre-training* (En) + fine-tuning (Hu)

QuartzNet (baseline) 15x5 (18M) based transfer learning WER[%] results on BEA-Base

Pre-training data size

[hours]
LM eval-repet eval-spont CV

3k – 10.63 24.87 –

3-gram 5.83 25.23 –

Conformer Small (13M) / Large (121M) transfer learning WER[%] results on BEA-Base

~10k

– 11.22 21.39 40.8

6-gram 4.96 17.77 34.8

– 5.2 17.24 34.8

6-gram 3.66 16.25 30.8
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End-to-end deep learning approach –
weakly-supervised training
Whisper in zero-shot and fine-tuning setups

29



Whisper results: zero-shot vs. fine-tuning

Whisper Medium/Large_v2 WER [%] results of BEA-Base

Model Fine-tuning Num of parameters eval-repet eval-spont CV

Whisper-Medium – 769M 22.33 38.67 27.6

Whisper-Large – 1550M 18.04 32.76 20.4

Whisper-Medium Decoder (456M) 769M 4.90 20.60 27.9

Whisper-Large Decoder (906M) 1550M 4.37 18.69 23.7

• (Pre-)training data size: 680k hours

• Num of languages: 97

• Composition: 83% English … 0.03% Hungarian
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End-to-end deep learning approach –
self-supervised pre-training
Transcription-free SSL pre-training + wav2vec2 encoder + attentional decoder
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Self-Supervised Pre-training based Transfer Learning

• Units: BPE (600)
• Loss: CTC + NLL
• Decoder: GRU
• Encoder: wav2vec2.0-

large, 300M
• LM: –/Transformer

• SSL pre-training
• All pre-trained models are downloaded from HuggingFace

• wav2vec2-large-lv60: LibriVox (English)

• wav2vec2-large-xlsr-53: CommonVoice + BABEL + Multilingual LibriSpeech

• wav2vec2-xls-r-300m:  CV + BABEL + MLS + VoxPopuli + VoxLingua107 (0.04% Hungarian)

• wav2vec2-mms-300: MMS-lab-U + VoxPopuli + … (Massively multilingual incl. Hungarian)

• wav2vec2-uralic: VoxPopuli (3 languages, 41% Hungarian)
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Wav2vec2 (SSL)-based Transfer Learning Results

wav2vec2-large+GRU+CTC+Attention+BPE_600 based transfer learning WER[%] results on BEA-Base

Model

SSL Pre-

training

languages

Pre-training data

size

[hours]

LM eval-repet eval-spont CV

wav2vec2-large-lv60 1* 53k – 8.46 19.17 36.5

wav2vec2-large-xlsr-53 53 56k – 5.81 16.62 34.2

wav2vec2-xls-r-300m 128 440k – 6.16 15.61 30.5

wav2vec2-mms-300 1406 491k – 6.56 18.82 34.9

wav2vec2-uralic 3** 42k – 4.24 11.55 21.3

Transformer 2.42 10.50 17.2

* = English
** = Estonian + Finnish + Hungarian 
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Wav2vec2 (SSL)-based Transfer Learning Results

wav2vec2-large+GRU+CTC+Attention+BPE_600 based transfer learning CER[%] results on BEA-Base

Model

SSL Pre-

training

languages

Pre-training data

size

[hours]

LM eval-repet eval-spont CV

wav2vec2-large-lv60 1* 60k – 2.6 5.9 11.2

wav2vec2-large-xlsr-53 53 56k – 2.1 5.5 10.5

wav2vec2-xls-r-300m 128 440k – 2.4 5.1 8.6

wav2vec2-mms-300 1406 491k – 2.2 5.8 9.1

wav2vec2-uralic 3** 42k – 1.7 3.7 5.8

Transformer 0.7 3.3 4.5

* = English
** = Estonian + Finnish + Hungarian 
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Final comparison
– with respect to RTF
Best of Conformer vs. Wav2vec2 vs. Whisper
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Best ASR results on spontaneous Hungarian (without
LM) vs. inference times
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Recommended end-to-end ASR tools

• https://github.com/espnet/

• https://github.com/facebookresearch/fairseq

• https://github.com/k2-fsa/k2

• https://github.com/lhotse-speech/lhotse

• https://speechbrain.github.io/

• https://github.com/openai/whisper

• https://github.com/NVIDIA/NeMo

• https://github.com/wenet-e2e
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