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Speech Technology
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Speech is great

* No baby learns from text

* No baby learns without communicative intent




Speech Is great

* Less complex than vision

« Continuous data (as opposed to image and text)

offers a more interaction with machines ©




Speech Production Mechanism
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‘ Why Speech Processing?

0 model and manipulate the speech signal to be able to:

« transmit (code) speech efficiently
» produce natural speech synthesis
* recognize the spoken word
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O speech is the natural form of communication between humans; it reflects a lot of the variability and complexity of humans!



Intelligent Speech Technology

Enabling machines to ”listen & speak”

» Speech Synthesis: Converting text to speech - Installing artificial mouth for computers

» Speech recognition: Converting speech to text and recognize speech content, speaker,
language and other information -> Installing artificial ear for computers

» Cognitive intelligence: Understanding and Thinking Speech
evaluation, Machine translation, Smart Customer Service




‘ Speech Processing Applications

U Human - Machine Communication
e Siri

O Machine - Human Communication

» Toshiba / Cambridge Talking Head

U Human - Human Communication

» speech coding (reduction in bit-rate/storage)

» speech enhancement (removal of noise)

» Voice Morphing, or voice transformation or voice conversion
» speech translation aids for disabled
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‘ Speech Waveform

non-stationary
pseudo-periodic
random components
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Speech Synthesis
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What Is the Speech Synthesis?

Speech synthesis is the artificial production of human speech that sounds almost like a human voice and is more
precise with pitch, speech, and tone.

Neural TTS

WaveNet (DeepMind) i
1779s 1791s 1939s 1950s 1970s 1990s 2010s 2016
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‘ Von Kempelen: 1791

KEMPE;LEN FARKAS KEMPELEN'S
BESZEDKELTO GEPE SPEAKING MACHINE
(1791) (1791)
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' Homer Dudley's VODER: 1939

« World’s Fair
« Manually controlled through complex keyboard
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‘ Cooper’s Pattern Playback:
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Gunnar Fant's OVE Synthesizer: 1953

* Of the Royal Institute of Technology, Stockholm
* Formant Synthesizer for vowels
* F1 and F2 could be controlled




‘ What Uses Does Speech Synthesis Have?

Assistive Technology for those with Speech Impairments

Navigation and Voice Commands—Enhancing GPS Navigation with Spoken Directions
Educational Materials and Language Learning
Audio Books

a M 0D PE

Entertainment Applications
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Types of Speech Synthesis Systems

» rule-based:
« formant synthesis
 articulatory synthesis

> concatenation of units

monophone
dlI_Ohone Concatenative ~ Formant
* micro-segmental
« unit selection [ ]
. %I+I+I+I§ —= R+0+ +E



Example: Concatenative synthesis

Selected speech units

o Whole speech unit database —
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Experiment for yourself!

1970s

Formant synthesis

2001

Microsoft XP synthesizer

1980s

Diphone synthesis

2005

Microsoft 7 and Windows Vista
synthesizer

1990s-2000s

Unit selection

2020
2000s IBM's Watson neural synthesizer
HMM synthesis

Many of these make use the source-filter model for speech production



Overview of speech vocoding
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Source-Filter Model
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m— Speech spectrum
Spectral envelope
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‘ Speech parameters
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Speech parameters
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Speech production
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Text-to-Speech (TTS)




What is TTS Synthesis?

* |tis atechnology that converts written text into spoken words.

« TTS systems analyze input text and generate corresponding synthesized speech output, allowing
computers or devices to "speak" the text aloud.

19
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What is Parametric TTS

How does it work?

« using learning based parametric models, e.g., HMM

« all the information required to generate speech is stored in the
parameters of the model

« also called statistical parametric synthesis (SPSS)

Advantages:
* |ower data cost and more flexible

Limitations:
» less intelligible than concatenative TTS




What is Neural TTS

How does it work?
« special kind of parametric models
« text to waveform mapping is modeled by deep neural networks

Advantages:
* huge quality improvement (intelligibility and naturalness)
« less human preprocessing and feature engineering input

output
layer

Disadvantages:
« Training/inference costly
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Applications of TTS

» learning disabillities

» proof-reading in word-processors

« language tutoring systems

« navigation and location services
 Information access over telephone
 aid to the handicapped

* e-books and audiobooks

* voice generation for content creation
e games, simulators, toys

* etc.

30



Key components of TTS systems
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« Acoustic model:
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text — linguistic features
linguistic features — acoustic features

acoustic features — speech
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Text analysis

Text i Linguistic)
Analysis features

Transforms input text into linguistic features

Text normalization
o 1989 — nineteen eighty-nine, Jan. 24th— January twenty-fourth

Phrase/word/syllable segmentation
o synthesis — syn-the-sis

Part of speech (POS) tagging
o Mary went to the store — noun, verb, prep, noun,

Grapheme-to-phoneme conversion
o Speech — s p iy ch

32



Text normalization

» process of transforming text into a standard, consistent format:

Lowercasing: convert all characters to lowercase for uniformity

Tokenization: break down the text into individual words or tokens.

Stemming/Lemmatization: reduce words to their base or root form.

Stop Words Removal: eliminate common words that don't contribute significantly to meaning.

Handling Numbers/Symbols: standardize the representation of numbers, dates, and special characters.

"The meeting is scheduled for 3:30 PM.” - "meeting schedule 3:30 pm."

Raw Normalized
2moro tomorrow
-50€ minus B50€ 2mrrw

2morrow
\ / 2mrw
. f . :E tomrw
minus fifty euros ba before

/ \ otw on the way

minus 50 euros -50 euros ) smile



« Phonemes: smallest units of sound in a language

» Letters: visual building blocks of written words.

Grapheme-to-Phoneme conversion

Phonemes

« Graphemes: smallest units of a writing system I | | 9]0 | l Graphemes

Letters

s plolo|n

G2P: process of converting written language into spoken language.
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Acoustic model

» Generate/Predict acoustic features from linguistic features

Linguistic .. | Acoustic
Acoustic 3
> Model

features features

 FO, V/UV, energy

» Mel-scale Frequency Cepstral Coefficients (MFCC), Bark-Frequency Cepstral Coefficients (BFCC)
» Mel-generalized coefficients (MGC), band aperiodicity (BAP),

» Linear prediction coefficients (LPC),

* Mel-spectrograms

* Pre-emphasis, Framing, Windowing, Short-Time Fourier Transform (STFT), Mel filter



‘ Acoustic model

Robust Speaker-Adaptive HMM-Based
TTS Synthesis

https://era.ed.ac.uk/bitstream/handle/1842/3962/yamagishi-taslp09.pdf?sequence=1&isAllowed=y
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Acoustic model

Feed Forward Deep Neural Network

input

i Of

FF-DNN




‘ Acoustic model

RNN

Tacotron2: A sequence-to-sequence model based on Recurrent Neural Networks

» Text to mel-spectrogram generation
« LSTM based encoder and decoder
* Location sensitive attention

» WaveNet as the vocoder

https://arxiv.org/abs/1712.05884

Waveform samples

A
WaveNet MoL

mel spectrogram

: i

5 Conv Layer Post-Net ]

)
l Bi-directional LSTM Linear Projection
9 4L ] Location A
PRIV EYEIS Sensitive 2 LSTM Layers ]:)
[} Attention [}
Character Embedding ] [ 2 Layer Pre-Net

IE0EUEE00
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‘ Acoustic model CNN

Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning

Wave Wave

$ T Wave
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§ 1 SR B .
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Acoustic model Transformer

FastPitch: Parallel Text-to-speech with Pitch Prediction

« conditioned on fundamental frequency contours [ MSE Loss |
» generate mel-spectrogram in parallel (for speedup) FT:
» feed-forward transformer with length regulator (for controllability) A
» predicts pitch contours during inference N x FFT Block
) MSE Loss | A |:| |:| A
E r—)@ -MSE Loss
! | Repeat
! Conv 1D A A
N fr g FC
2 Pitch " Duration ! Cont 1D
* Predictor . Predictor |
Conv 1D A e e ' A
¢ j Conv 1D
Conv 1D | N x FFT Block A
- £
Embedding

https://arxiv.org/pdf/2006.06873.pdf



Vocoder

Acoustic
Vocoder = Speech
features
Model Vocoder
Autoregressive WaveNet, LPCNet, WaveRNN, FFTNet
Flow WaveGlow, WaveFlow
GAN WaveGAN, MelGAN, Hifi-GAN,
VAE Wave-VAE
Diffusion WaveGrad, DiffWave

41



‘ Vocoder

Continuous vocoder

SPSS

i STATISTICAL .
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v
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ﬁ—bﬁl'lﬁc parameters
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‘ Vocoder

Autoregressive

WaveNet: autoregressive model with dilated causal convolution

3 H—H @@ {21 ]-@ [T [ > oo
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https://arxiv.org/pdf/1609.03499.pdf
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Vocoder

Flow

WaveGlow: A Flow-based Generative Network for Speech Synthesis

 Flow based transformation
» Affine Coupling Layer

https://arxiv.org/pdf/1811.00002.pdf

xX12

affine
coupling layer

?

invertible 1x1

convolution

squeeze to
vectors

?

X

Xa Xp

upsampled
mel-spectrogram
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Vocoder

GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High-Fidelity Speech Synthesis

Ground truth
waveform

Generator

Mel-spectrogram

p—

Multi-Period L: Real/fake losses

Discriminator

'i'l

Discriminator '_: Real/fake losses

v Jr
Feature losses

synthesize speech waveforms from mel-spectrograms.

follows the generative adversarial network (GAN)

composed of a generator and a discriminator

after training, the generator is used for synthesis, and the discriminator is discarded

https://arxiv.org/pdf/2010.05646.pdf
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Vocoder

WaveGrad: Estimating Gradients for Waveform Generation

Diffusion probabilistic model
. Forward (diffusion) process
. Reverse (denoising) process
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( T q(xy|x To|x 5 g(xr|x
Jaata(Z0);  4(@1|Zo) (@2021) & Giffusion process r|Zr-1)
; reverse process
Pal l‘o|T1 5 21 I1|E2 Po O 1|Tr Platent (:

’V\»/\fM/\/%/\ &“WUMMWW

https://arxiv.org/pdf/2009.00713.pdf
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‘ Data conversion pipeline

Text

e —) Linguistic : Acoustic
1. Character —————{ Text Analysis —| Acoustic Model » Vocoder )-* Waveform
Features Features
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e 2. Charact Text Analysis s Vocod b Wavef
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HMM/DNN based|sPSs Tacotron 2 - Lharacter/Fhoneme coustic Mode Spectrogran_vocoder aveform
DeepVoice 3
ARST Tacotron ansformerTTS
FadSpeech 1/2 4. Character/Phoneme -| Fully End-to-End TTS Model }-» Waveform
| Char2Wav
ClariNet
Acoustic WaveNet | LSP/MCC/MGC+FO+BAP | ( LinS | [ MelS ] FastSpeech 25
T Par.WaveNet EATS
Features WaveRNN . Wave-Tacotron
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elGAN
Par.WaveGAN NaturalS h
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The end-to-end problem we want to solve

» end-to-end systems are systems which learn to directly map from an input sequence X to an output
sequence Y , estimating P(Y [X)

text ~— — Text-to-Speech —  yaveform

Author of the.. q‘;,W'Mg;‘_. ""—“"ithT'W“i'ﬂ'iw



Fully End-to-End TTS

Direct text/phoneme to waveform generation

Advantages:

Fully differentiable optimization (towards the end goal)
Reduce cascaded errors (training/inference mismatch)

No mel-spectrogram bias (mel-spectrogram is not an optimal

representation)

49



' Fully End-to-End TTS

ClariNet: Parallel Wave Generation In End-to-end Text-to-speech

Waveform

(Vocoder (djstill))

l Bﬁdge-@—’ Linear Output

l Dec:@—‘ Mel Output

|Attention |

F 3

| Encoder |

Text
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https://openreview.net/pdf?id=HklIY120cYm
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Fully End-to-End TTS

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End TTS

VAE, Flow, GAN

VAE: mel—-waveform

Flow for VAE prior

GAN for waveform generation
Monotonic alignment search

https://arxiv.org/pdf/2106.06103.pdf
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Attention and Alignment

» Attention is a mechanism in machine learning models that allows the model to focus on specific
parts of the input sequence when making predictions.

» Alignment refers to the relationship between words in the input and output sequences. It ensures
that the model understands which parts of the input correspond to which parts of the output.

* Intranslation, alignment ensures that the translated words correspond correctly to the words
in the original language.

Why Attention and Alignment Matter?

» Attention helps the model better understand and capture dependencies between words in the
Input sequence.

» Particularly useful when input and output sequences have different lengths, allowing the model to
align information appropriately.

Global attention

Local attention
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Advanced topics In TTS
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Advanced topics In Neural TTS

J Expressive TTS
d Controllable TTS
J Adaptative TTS

54



Expressive TTS

Expressiveness:
« whattosay -> Characterized by content

« whotosay - speaker/timbre
« howtosay - prosody/emotion/style

« where to say -2 noisy environment

Linguistic
Text J

- Acoustic
Acoustic
Analysis | > Model | Vocoder Speech
y features features

Style | Embedding

» i Style
@\ Extraction

Text —>

(duration, pitch, sound volume, speaker, style, emotion, etc)



Expressive TTS

Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End Speech Synthesis

During training:
» the log-mel spectrogram of the training target is fed to the reference encoder followed by a style token layer.
* The resulting style embedding is used to condition the Tacotron text encoder states.

During inference:
+ feed an arbitrary reference signal to synthesize text with its speaking style.

Training Inference

Conditioned on audio signal i Conditioned on Token B

!
I
i
i
!
|
i
i
i
i
i
i
i
i
i
i
|

https://proceedings.mir.press/v80/wang18h/wang18h.pdf 56



Controllable TTS

Adjustable Parameters

TTS systems allow control over voice characteristics like pitch, rate, and volume.

Syntax Markup

Adding annotations or tags in the input text can control aspects like emphasis, pauses, or pronunciation.

Prosody Manipulation

Direct control over intonation, rhythm, and stress patterns is available in some TTS systems.

Customization and Training

57

Advanced systems permit customization and training for specific voices, accents, or speech styles,
offering more nuanced control over the output.

Voice-Controlled



Controllable TTS

Controllable neural text-to-speech synthesis using intuitive prosodic features

Text >
training phase — Encoder » Attention » Decoder ——
> Mel
» the prosody encoder learns to predict the _
sentence-wise prosodic features Stop gradient (X2 Prosody Teacher-forcing
« the decoder is conditioned on the ground-truth encoder —L
features (teacher-forcing). T <« Minimize error
inference phase Audio Feature | Sentence
: : extraction | features
» prosody encoder predicts prosodic features to
condition the decoder, with an additional bias o
option for prosody control. .I.-I@f’.‘['.‘? .................................................................................
Synthesis
Text > P
—{ Encoder » Attention » Decoder —

Prosody
encoder

<
o

Optional bias

https://arxiv.org/pdf/2009.06775.pdf 58



Adaptive TTS

Empower TTS for everyone

* Pre-training on multi-speaker TTS model

« Fine-tuning on speech data from target speaker
« Inference speech for target speaker

Challenges
« To support diverse customers, the source model needs to be generalizable enough
« The target speech may be diverse (different acoustics/styles/languages)

Web Apps

59

Messaging Apps

Smart Speaker

Mobile apps



Adaptive TTS

AdaSpeech: Adaptive Text to Speech for Custom Voice

Acoustic condition modeling

« Model diverse acoustic conditions at speaker/utterance/phoneme level

« Support diverse conditions in target speaker

Conditional layer normalization

« Tofine-tune as small parameters as possible while ensuring the adaptation quality

https://arxiv.org/pdf/2103.00993.pdf
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‘ TTS Model Evaluation

Objective Evaluation Subjective Evaluation
Mel Cepstral Distortion (MCD) MUSHRA (Multiple Stimuli with Hidden Reference and Anchor)
root mean square error (RMSE) Mean Opinion Score (MOS)

Short-Time Objective Intelligibility (STOI)

Perceptual Evaluation of Speech Quality (PESQ)

Segmental Signal-to-Noise Ratio (SNRseq)

etc.




TTS Demos

Festival
http://www.cstr.ed.ac.uk/projects/festival/morevoices.html

Cereproc
https://www.cereproc.com/en/products/voices



http://www.cstr.ed.ac.uk/projects/festival/morevoices.html
https://www.cereproc.com/en/products/voices

TTS & STT for all languages

There are 7,000+ languages in the world, but popular commercialized
speech services only support hundreds of languages

D @ aws
Google Cloud Amazon Polly
\ 1y
~ 2N

@{ 3 ,F % |BM Watson® A Microsoft Azure
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Please, don't forget Bl -h
to send feedback: 2, . EI;:

https://bit.ly/bme-dl



https://bit.ly/bme-dl

Thank you
for your attention

Dr. Mohammed Salah Al-Radhi
malradhi@tmit.bme.hu

12 November 2024
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