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Real-world networks and GNN applications



Real-world networks and GNN applications

• Graphs are very generic: objects and relations

• Representing complex systems: engineering, biological, social

social networks

image source: Medium
recommender systems

image source: arxiv

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://arxiv.org/pdf/2109.12843.pdf


Real-world networks and GNN applications

knowledge graphs

image source: ogb.stanford.edu

image source: arxiv

https://ogb.stanford.edu/
https://arxiv.org/pdf/2306.08302.pdf


Real-world networks and GNN applications

Estimated time of arrival

(google maps)

Water distribution systems

image source: springer
https://arxiv.org/abs/2108.11482 https://arxiv.org/abs/2104.13619v2 

https://link.springer.com/article/10.1007/s11269-017-1750-2
https://arxiv.org/abs/2108.11482
https://arxiv.org/abs/2104.13619v2


Real-world networks and GNN applications

Semantic segmentation

in the medical domain
Semantic segmentation

image source: medium

https://link.springer.com/chapter/10.1007/978-3-031-12053-4_31 

https://towardsdatascience.com/3d-machine-learning-course-point-cloud-semantic-segmentation-9b32618ca5df
https://link.springer.com/chapter/10.1007/978-3-031-12053-4_31


Real-world networks and GNN applications

Alphafold 2.0 by DeepMind:

predicts a protein’s 3D structure 
from its amino acid sequence

“This will be one of the most 
important datasets since the 
mapping of the Human Genome.”

Professor Ewan Birney

https://alphafold.ebi.ac.uk/

https://alphafold.ebi.ac.uk/


Real-world networks and GNN applications

The Internet visualized

image source: youtube

Biochemical pathways in humans

image source: metabolic_pathways

https://www.youtube.com/watch?v=vo5glK9czIE
https://faculty.cc.gatech.edu/~turk/bio_sim/articles/metabolic_pathways.png


Representation of graph data



How to store a graph?

• Adjacency matrix: O(N2) memory

• Most real-world networks are sparse

• Sparse matrix format: O(E) memory

• supported by SciPy & PyTorch

• edge indices 2 x E

• edge values 1 x E

• Undirected graphs
• often desirable

• symmetric adjacency matrix

Figure from: https://mathworld.wolfram.com/AdjacencyMatrix.html

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://pytorch.org/docs/stable/sparse.html
https://mathworld.wolfram.com/AdjacencyMatrix.html


How to store a graph?

• xi node-level features

• eij edge-level features

• g graph-level features

• labels and predictions:
• predict an unknown property of 

nodes

• predict an unknown property of 
edges

• predict an unknown property of 
the whole graph



How to store a graph?

• Nodes:

• drug

• protein

• Edges:

• drug-drug (side effect)

• drug-protein (interaction)

• protein-protein (interaction)

• Node level features

• Application:
• drug repurposing for COVID-19 Figure from: https://academic.oup.com/bioinformatics/article/34/13/i457/5045770

https://pubmed.ncbi.nlm.nih.gov/33906951/
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770


Message passing and mini-batching



Embeddings

https://developers.google.com/machine-learning/crash-course/images/Embedding2dWithLabels.svg 

https://developers.google.com/machine-learning/crash-course/images/Embedding2dWithLabels.svg


Embeddings

• Graph neural networks produce node embeddings

• Similar nodes should have similar embeddings
(according to a distance metric)

• A and B are positionally close, while A and C are structurally close:

• Edge embeddings: from node embeddings e.g. pairwise averaging

• Graph embeddings: from node embeddings e.g. global averaging
• Permutation invariant operators



Nodes in embedding space

https://snap-stanford.github.io/cs224w-

notes/assets/img/node_embeddings.png?style=centerme



Embeddings



Image convolution vs graph convolution

https://arxiv.org/abs/1901.00596 

https://arxiv.org/abs/1901.00596


Message passing layers

• In each layer, we aggregate each node’s
own features with its neighbors’ features

• Graph Isomorphism Network (GIN)
• Aggregation is summation

• In a layer, a node’s own features are summed
with its neighbor’s features, and then
the expression is put into an MLP:

𝑥𝑖
′ = 𝑀𝐿𝑃(𝑥𝑖 + ෍

𝑗𝜖𝒩(𝑖)

𝑥𝑗)

• Implemented as a sparse-dense matrix multiplication: 𝑋′ = 𝑀𝐿𝑃(𝑋 + 𝐴𝑋)
where 𝐴 is the NxN adjacency matrix and 𝑋 is the NxF feature matrix

• If the Weisfeiler-Lehman test can distinguish two graphs, a GIN also can →
with node features, GINs are more powerful

Reference: https://arxiv.org/pdf/1810.00826.pdf

https://arxiv.org/pdf/1810.00826.pdf


Message passing layers

Figure from: https://arxiv.org/pdf/1905.07953.pdf

https://arxiv.org/pdf/1905.07953.pdf


Message passing layers

• GIN cannot handle edge features

• A more general message passing layer:

𝑥𝑖
′ = 𝜙𝑥 𝑥𝑖 , ෍

𝑗𝜖𝒩 𝑖

𝜙𝑒 𝑥𝑖 , 𝑥𝑗 , 𝑒𝑖𝑗

where 𝜙𝑥 and 𝜙𝑒 are learnable functions (MLPs)

• Edge features can also be updated:

𝑒𝑖𝑗
′ = 𝜙𝑒 𝑥𝑖 , 𝑥𝑗 , 𝑒𝑖𝑗

𝑥𝑖
′ = 𝜙𝑥 𝑥𝑖 , ෍

𝑗𝜖𝒩 𝑖

𝑒𝑖𝑗
′

Reference: https://arxiv.org/pdf/1806.01261.pdf

https://arxiv.org/pdf/1806.01261.pdf


Examples - again

Water distribution systems

image source: springer

social networks

image source: Medium

Figure from:
 https://academic.oup.com/bioinformatics/article/34/13/i457/5045770

https://link.springer.com/article/10.1007/s11269-017-1750-2
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://academic.oup.com/bioinformatics/article/34/13/i457/5045770


Message passing layers

• Other permutation invariant operations instead of summation:

Reference: https://arxiv.org/pdf/2004.05718.pdf

https://arxiv.org/pdf/2004.05718.pdf


Pooling layers

reference: https://arxiv.org/pdf/1806.08804.pdf

https://arxiv.org/pdf/1806.08804.pdf


• 𝑍 = 𝐺𝑁𝑁 𝑋, 𝐴 N x F matrix

• 𝑆 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐺𝑁𝑁 𝑋, 𝐴 N x M matrix

• “soft cluster assignments” M < N

• X′ = 𝑆𝑇𝑍 M x F matrix

• 𝐴′ = 𝑆𝑇𝐴𝑆 M x M matrix

Pooling layers

reference: https://arxiv.org/pdf/1806.08804.pdf

https://arxiv.org/pdf/1806.08804.pdf


Mini-batching

Adjacency matrices,

Graphs with same size

Adjacency matrices,

Graphs with different sizes

Adjacency matrix,

Blockdiagonal



Mini-batching

• Multiple graphs in a mini-batch:

• Very large graphs: a graph partitioning algorithm is used (e.g. METIS), 

and multiple clusters are randomly selected to create a mini-batch

https://pytorch-geometric.readthedocs.io/en/latest/advanced/batching.html 

https://github.com/KarypisLab/METIS
https://pytorch-geometric.readthedocs.io/en/latest/advanced/batching.html


Another interesting application

Simulation of complex physics with graph neural networks:

https://sites.google.com/view/learning-to-simulate

https://arxiv.org/abs/1901.00596https://arxiv.org/abs/1901.00596

https://sites.google.com/view/learning-to-simulate


Self-supervised learning



Self-supervised learning

• No pretrained models or foundation models: very different domains →

very different graph structures and features

• Pretraining works well within the same domain

• Labeled data is expensive, and often requires domain knowledge

• But networks are everywhere around us → self-supervised learning



• 1) Unsupervised 

representation learning

• 2) Unsupervised pretraining:

• 3) Auxiliary learning:

Self-supervised learning

41Reference & figures: https://arxiv.org/pdf/2102.10757.pdf

https://arxiv.org/pdf/2102.10757.pdf


Self-supervised learning: an example

Reference & figure: https://arxiv.org/pdf/2205.10803.pdf

• Features of the selected nodes are masked using a mask token

• The graph is encoded with a GNN encoder

• The codes of the selected nodes are masked using another mask token

• The codes are decoded with a GNN decoder → feature reconstruction loss

https://arxiv.org/pdf/2205.10803.pdf


Once another interesting application

AI model for faster and more accurate global weather forecasting

https://charts.ecmwf.int/products/graphcast_medium-mslp-wind850

https://charts.ecmwf.int/products/graphcast_medium-mslp-wind850
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• Book
• William L. Hamilton (2020). Graph representation learning.

Morgan & Claypool Publishers.
• Videos

• https://geometricdeeplearning.com/lectures/
• https://www.youtube.com/watch?v=bIZB1hIJ4u8
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• https://distill.pub/2021/understanding-gnns/

https://geometricdeeplearning.com/lectures/
https://www.youtube.com/watch?v=bIZB1hIJ4u8
https://www.youtube.com/watch?v=jAGIuobLp60
https://sites.google.com/view/learning-to-simulate
https://web.stanford.edu/class/cs224w/
https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/understanding-gnns/


Please, don’t forget 
to send feedback:

https://bit.ly/bme-dl
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Thank you 
for your attention

26 November 2024

Dr. Mohammed Salah Al-Radhi

malradhi@tmit.bme.hu

mailto:malradhi@tmit.bme.hu
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