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What is Brain Activity?

➢ it refers to the electrical, chemical, and metabolic signals generated by neurons.

➢ Neurons communicate through electrical impulses called action potentials.

Type of Brain Signals:

➢ Electrical Signals: Measured as voltage fluctuations (EEG).

➢ Metabolic Signals: Changes in oxygen and glucose levels (fMRI, PET).
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fMRI
(Functional Magnetic Resonance Imaging)

Tracks oxygenated blood flow

EEG 

(Electroencephalography)

Captures electrical activity of the brain

MEG

(Magnetoencephalography)

Measures magnetic fields produced by 
neural currents

How can we measure brain activity?
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Characteristic EEG fMRI MEG

Temporal Resolution High (millisecond scale) Low (seconds) High (millisecond scale)

Spatial Resolution Low (centimeters) High (millimeters)
Moderate 

(centimeters to millimeters)

Cost Relatively low High Very high

Portability

Good

can be used in various 
settings

Poor

requires a large, 
stationary scanner

Poor

requires a magnetically 
shielded room for best results

Sensitivity
Sensitive to surface 

electrical activity

Sensitive to changes 

in blood flow related 

to neural activity

Sensitive to magnetic fields 

from deeper brain structures

Noise Immunity
Susceptible to electrical 

noise

Less affected by 

noise, but can be 

influenced by 

motion and 

magnetic artifacts

Sensitive to magnetic noise, 

thus requires shielding

Comparison table
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Is it possible to decode speech from brain signals?
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Is it possible to decode speech from brain signals?
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Challenges

❑ Challenges in Brain-to-Speech:
• Neural signals are noisy, non-stationary, and vary across individuals and sessions.
• Aligning neural features with prosodic and linguistic cues is complex.
• Limited high-quality, annotated datasets hinder robust model training.
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Challenges & Motivation

❑ Challenges in Brain-to-Speech:
• Neural signals are noisy, non-stationary, and vary across individuals and sessions.
• Aligning neural features with prosodic and linguistic cues is complex.
• Limited high-quality, annotated datasets hinder robust model training.

❑Motivation for Our Approach:
• Extract richer neural features to better capture speech dynamics.
• Incorporate prosody for more natural and expressive reconstructions.
• Reduce vocoder phase artifacts to improve intelligibility and perceived quality.
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Previous Methodology
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Herff C, Heger D, de Pesters A, Telaar D, Brunner P, Schalk G and Schultz T. Brain-to-text: decoding spoken phrases from phone representations in the brain. Front. Neurosci. 9:217, 2015

❖ Ignores speech features like tone and emotion, focusing only on semantic content, which reduces naturalness.
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Phoneme Approach

• Decode discrete phoneme sequences  directly 
from neural signals.

• Use a phoneme-to-speech synthesizer to 
generate audio output.

• Focus: symbolic linguistic units, not acoustic 
detail or continuous motion.



Anumanchipalli, G.K., Chartier, J. & Chang, E.F. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498, 2019

Brain →  Kinematic  → Speech

❖ Relies on accurately decoding motor representations, 

which are noisy and may not capture coarticulation or 

speech dynamics fully.
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Kinematic Approach

• Decode continuous motor trajectories 
(e.g., tongue, lips, jaw) from neural signals.

• Reconstruct speech by driving a 
synthesizer using these trajectories.

• Focus: movement patterns, not direct 
visual articulation.



Angrick, M., Ottenhoff, M. C., Diener, L., Ivucic, D., Ivucic, G., Goulis, S., ... & Herff, C. Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity. Communications biology, 4(1), 2021
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❖ Requires high-quality neural signals and is heavily dependent on vocoder performance.
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Spectrogram Approach

• Predict time–frequency acoustic 
features (e.g., mel-spectrogram 
bins) from neural activity. 

• Reconstruct speech using a simple 
vocoder from predicted 
spectrograms.

• Focus: fine acoustic detail for 
naturalness, bypassing 
phoneme/articulator steps.



Brain → Articulation → Speech

T. G. Csapó, Frigyes Viktor Arthur, Péter Nagy, Ádám Boncz, Towards Ultrasound Tongue Image prediction from EEG during speech production, Interspeech, Dublin, Ireland, 2023
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❖ Mapping brain activity to articulatory movements is complex and often lacks prosody and expressiveness in the output.
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Articulation Approach

• Map neural activity to visual 
articulatory data (e.g., ultrasound 
tongue imaging, EMA).

• Convert articulatory 
representations into acoustic 
features for speech synthesis.

• Focus: structural, image-based 
articulator shapes, not just 
trajectory control.



Proposed Methodology
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Our Contributions

• Wavelet-based multi-modal feature extraction capturing articulatory 
and prosodic cues.

• Prosody-aware Transformer for accurate and expressive spectrogram 
prediction.

• IHPR neural phase vocoder for artifact-free, harmonically aligned 
speech synthesis.
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MiSTR Overview Diagram
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Step 1 – Wavelet-Based Feature Extraction

• We decompose neural recordings into 
theta (4–8 Hz), beta (13–30 Hz), and 
high-gamma (60–200 Hz) bands.

• This multi-band analysis preserves 
information about articulation, 
rhythm, and fine acoustic detail.

• Wavelet transforms enable localized, 
time-frequency analysis for capturing 
transient neural events.
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Step 2 – Prosody Features

• Extract prosody features including 
pitch contour, energy variation, 
shimmer, and speech segment 
durations.

• These features are essential for 
producing speech that sounds 
expressive and human-like.

• Prosodic information complements 
spectral features, improving both 
intelligibility and naturalness.
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Step 3 – Transformer Spectrogram Prediction

• The Transformer architecture models long-range dependencies better than RNN-based 
approaches.

• Multi-head self-attention allows the model to focus on different temporal and spectral 
patterns simultaneously.

• This leads to more coherent spectrogram predictions, especially for complex phoneme 
sequences.
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Step 4 – IHPR Phase Vocoder

• IHPR (Iterative Harmonic Phase 
Refinement) enforces phase continuity 
across harmonics.

• Before IHPR: noticeable phase 
misalignments produce metallic or 
distorted speech.

• After IHPR: harmonics are aligned, 
reducing artifacts and improving 
perceived quality.
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Dataset

• Epilepsy patients

• Sessions ~2 hours

• 10 participants, native speakers of Dutch

• mean age 32 years (range 16–50 years); 
5 male, 5 female).

• Speaking Dutch words aloud while audio 
and intracranial EEG data are recorded 
simultaneously

• Lab streaming layer (ref)

• Neural stream

• Audio stream

• Marker stream

Herff, C. & Verwoert, M. Dataset of Speech Production in intracranial Electroencephalography, Open Science Framework, https://doi.org/10.17605/OSF.IO/NRGX6 (2022).
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Participants

https://www.nature.com/articles/s41597-022-01542-9

➢ Electrode locations of each 
participant in the surface 
reconstruction of their 
native anatomical MRI.

➢ Each red sphere represents 
an implanted electrode 
channel.
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RESULTS
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Evaluation Metrics

• Our model, MiSTR, outperforms state-of-the-art baselines across multiple objective measures.
• Significant improvements observed in STOI (intelligibility) and PESQ (perceived quality) scores.
• Demonstrates that integrating prosody and phase refinement yields substantial performance gains.
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• MiSTR shows clearer high-frequency structure and stronger harmonic bands vs. baseline.

Visual Comparisons
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Conclusion and Future Directions

✓ MiSTR achieves speech reconstructions that are both intelligible and natural-sounding, 
outperforming baseline spectrogram-only pipelines.

✓ Demonstrated the benefits of combining multi-modal wavelet-based features, 
prosody-aware Transformers, and a phase-aligned vocoder to reduce artifacts.

✓ Validated on real neural speech data, showing improved prosody preservation and 
harmonic alignment.

❑ Future Work:
• Explore end-to-end neural decoding pipelines that bypass intermediate spectrogram 

prediction.
• Integrate diffusion-based neural vocoders and other generative models for further 

gains in naturalness.
• Extend to continuous speech and speaker-independent scenarios.
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Take-Home Message

➢ Combining prosody-aware modeling with harmonic phase refinement is key to 

bridging the gap between intelligibility and naturalness in brain-to-speech synthesis.
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Thank you

Mohammed Salah Al-Radhi

malradhi@tmit.bme.hu

Happy to collaborate!
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GitHub: https://github.com/malradhi/MiSTR

Demo  : https://malradhi.github.io/MiSTR/

https://github.com/malradhi/MiSTR
https://malradhi.github.io/MiSTR/
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