Continuous Wavelet Vocoder-based Decomposition of Parametric Speech Waveform Synthesis

Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Csaba Zainkó, Géza Németh

Motivation

$>$ Fourier Transform decomposes a signal into infinite length sines and cosines.
\square losing all time-localization information.
$>$ Short-Time Fourier Transform (STFT) have a fixed width.
Can't vary the window size to determine accurately either time or frequency.
> Wavelet Analysis breaking up of a signal into shifted, shrinked, and scaled function. \square windowing technique with variable-sized regions.

Time Domain (Shannon)

Frequency Domain (Fourier)

Problem formulation

$>$ Source-filter models

- over-smoothed spectra
- buzzy synthesized TTS
$>$ Neural models
- large quantity of voice data
- difficult to use in real-time

In this study ...

$>$ present an updated synthesizer to:

- characterize and decompose speech features
- retain the fine fundamental frequency
- generate natural-sounding synthetic speech

Methodology

$>$ Continuous Wavelet Transform (CWT)
It is the sum over all time of the signal multiplied by scaled, shifted versions of the wavelet.

$$
C(\text { scale, position })=\int_{-\infty}^{\infty} f(t) \psi(\text { scale, position }, t) d t
$$

decomposes a multi-level representation of contF0, MVF, and spectral envelope.

Experimental conditions

> Speech Corpus

English speaker from CMU-ARCTIC database [Kominek and Black, 2003]

- 4 male and 2 female
- 1132 sentences with sampling rate 16 kHz

> Reference Systems

- WaveNet [Oord et al., 2016]
- WORLD [Morise et al., 2016]
- Continuous [Al-Radhi et al., 2017]
- Anchor

5 of 8

Results

\square mel-cepstrum distortion

MCD (dB)	Male	Female
Baseline	4.03	4.13
WaveNet	4.74	4.97
WORLD	3.31	3.27
Proposed	3.47	3.42

\square continuous F0 estimated by CWT

$\square \quad \mathrm{F} 0$ root mean square error

RMSE (dB)	Male	Female
Baseline	4.37	4.31
WaveNet	4.14	4.67
WORLD	3.42	3.51
Proposed	3.85	3.98

\square sound quality of synthesized speech

- Samples
https://malradhi.github.io/cwt_vocoder/

Summary

\checkmark Synthetic speech was produced with continuous wavelet transform technique.
\checkmark WaveNet model did not perform well with CMU-ARCTIC corpus (tested with 6 hours of recorded speech).
\checkmark Proposed system was able to generate a natural-sounding synthetic speech and superior to WaveNet vocoder.

We'd love to talk to you!

malradhi@tmit.bme.hu

Wavelet Vocoder

