7

0\3‘( OF gy e

A ENGY,
Q\"’“ N‘."@% Y o m—______ S

1 ) £ R T e A —
A MUEGYETEM 1782 BME TMIT

Continuous Wavelet VVocoder-based Decomposition of
Parametric Speech Waveform Synthesis

Mohammed Salah Al-Radhi, Tamas Gabor Csap0d, Csaba Zainkd, Géza Németh

malradhi@tmit.bme.hu

Budapest University of Technology and Economics
Budapest, Hungary

NVIDIA.

GPU

EDUCATION
CENTER

September 01, 2021

SmartlLab

htto.//smartlab.tmit.bme.hu



Motivation

» Fourier Transform decomposes a signal into infinite length sines and cosines.
Q losing all time-localization information.

» Short-Time Fourier Transform (STFT) have a fixed width.
O Can’t vary the window size to determine accurately either time or frequency.

» Wavelet Analysis breaking up of a signal into shifted, shrinked, and scaled function.
O windowing technique with variable-sized regions.
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Problem formulation

» Source-filter models
« over-smoothed spectra
* buzzy synthesized TTS

» Neural models
 large quantity of voice data
« difficult to use in real-time

In this study ...

» present an updated synthesizer to:

« characterize and decompose speech features
 retain the fine fundamental frequency
 generate natural-sounding synthetic speech
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Methodology

» Continuous Wavelet Transform (CWT)

O Itis the sum over all time of the signal multiplied by scaled, shifted versions of the wavelet.

C(scale,position) = jf(t)t,b(scale,position, t)dt

O decomposes a multi-level representation of contFO, MVF, and spectral envelope.
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Experimental conditions

» Speech Corpus

English speaker from CMU-ARCTIC database [Kominek and Black, 2003]
* 4 male and 2 female
« 1132 sentences with sampling rate 16 kHz

» Reference Systems

*  WaveNet [Oord et al., 2016]

*  WORLD [Morise et al., 2016]

«  Continuous [Al-Radhi et al., 2017]
*  Anchor

50f8



Results

O mel-cepstrum distortion

MCD (dB) Male Female
Baseline 4.03 4.13
WaveNet 4.74 4.97
WORLD 3.31 3.27
Proposed 347 342

O continuous FO estimated by CWT

Female speaker Male speaker

O FO root mean square error
RMSE (dB) Male Female
Baseline 4.37 4.31
WaveNet 4.14 4.67
WORLD 3.42 3.51
Proposed 3.85 3.98
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summary

v" Synthetic speech was produced with continuous wavelet transform technique.

v WaveNet model did not perform well with CMU-ARCTIC corpus (tested with 6
hours of recorded speech).

v Proposed system was able to generate a natural-sounding synthetic speech and
superior to WaveNet vocoder.
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