

A Continuous Vocoder using Sinusoidal Model for Statistical Parametric Speech Synthesis

Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh

Department of Telecommunications and Media Informatics Budapest University of Technology and Economics, Budapest, Hungary

{malradhi,csapot,nemeth}@tmit.bme.hu

SPECOM 2018 Leipzig, Germany

September 20, 2018

GPU EDUCATION CENTER

Outline

Background

- Speech synthesis
- Vocoder

≻Reseach goal

• Hypotheses

> Methodology

- Continuous sinsoidal model
- Smoothing of the contF0

Experimental evaluation

- Objective test
- Subjective test

Future research direction and conclusion

Speech synthesis is the computer generated human speech.

> Vocoder

- is a category of voice codec that analyzes and synthesizes the human voice signal.
- provide a parametric representation of the speech signal suitable for coding and statistics

Text-to-speech synthesis (TTS)

- Generating speech waveform from textual input
- Transmit data from a machine to a human user

Statistical Parametric Speech Synthesis

- Flexibility to change voice characteristics
- Store statistics rather than waveforms
- Smoothness and style adaptation

Simplified vocoder of speech production

- Voiced source: Generated by vocal cords vibrations, periodic, F0
- Unvoiced source: Generated without vibrations, no pitch

Problem formulation

> Key factors for quality degradation of speech synthesis:

- 1. Parametric vocoder (speech analysis & synthesis)
- 2. Acoustic modeling accuracy
- 3. Over-smoothing (sounds muffled)

Vocoding issues:

- 1. Buzziness
- 2. Creaky voice
- 3. Real-time processing

Challenges

- Despite large improvements, Speech synthesis can still sound a little unnatural.
- Natural speech need considerable resources in terms of data storage and processing power.

□ STRAIGHT is the most widely used vocoder for statistical parametric speech synthesis (SPSS) as a baseline.

But

• STRAIGHT vocoder is too slow to be used in practice because it relies on high-order FFT for high-resolution spectral synthesis.

Goal

There is a need for simple and computationally feasible algorithms:

• to construct a vocoder whose parameters can be controlled to achieve high quality synthesized speech.

> Analysis

- Linear Prediction residual-based excitation [Csapó et al., 2016]
- Continuous fundamental frequency (F0) algorithm [Garner et al., 2013]
- Maximum Voiced Frequency (MVF) [Drugman and Stylianou, 2014]
- Standard Mel-Generalized Cepstral (MGC) [Tokuda et al. 1994]
- Statistical training of HMMs
 - Decision tree-based context clustering [Zen et al., 2007]
- > Synthesis
 - Voiced and unvoiced excitation component added together according to MVF

Basic F0 model

- continuous in voiced regions
- discontinuous in unvoiced regions
- hard to model boundaries between voiced and unvoiced segments
- difficult to handle mixed excitation
- Continuous F0 model
 - no voiced/unvoiced decision
 - decrease the disturbing effect of creaky voice
 - easier to handle mixed excitation

"The girl faced him, her eyes shining with sudden fear."

> MVF to model the voiced/unvoiced characteristics of sounds

- Excitation parameter
- > To overcome simple impulse based excitation
 - Principle Component Analysis (PCA) residual frames overlap-added depending on the continuous F0

"The girl faced him, her eyes shining with sudden fear."

Problem formulation

- There is a lack of naturalness and still not achieving a high-quality speech synthesis compared to the well-known vocoders (e.g. STRAIGHT or WORLD).
- The estimated contF0 contours have high unwanted voiced component in the unvoiced speech sounds.

- > Using sinusoidal synthesis model that is applicable in statistical frameworks will be superior to the baseline vocoder (source-filter model).
- Smoothing the estimated contF0 algorithm by a post-processing phase will eliminate octave errors and isolated glitches.

Proposed vocoder

Continuous Sinusoidal Model (CSM)

Continuous Sinusoidal Model (CSM)

> Analysis step:

Three parameters of the analysis part from our previous source-filter model have been also extracted and used for this study.

- 1. contF0: Pitch values to have a small amount of noise variation if they are not estimated well
 - leads to extra buzziness.
 - undependable feature measurements.
- 2. MVF
- 3. MGC

Smoothing of the contF0 contour

- Combine two smoothing steps in contF0
 - median filter using 0.1s window to ignore isolated outliers while preserving both the finegrained variations and the sharpness of true step transitions
 - linear smoother (zero-phase filtering) with Hanning window is applied to remove higherfrequency resonance effects and hence suppress the noisiness of the measurement

"Sometimes her dreams were filled with visions."

Continuous Sinusoidal Model (CSM)

> Sinusoidal synthesis:

The novelty behind this step is to decomposes the speech frames into a harmonic/voiced component lower band and a stochastic/noise component upper band based on MVF values.

Continuous Sinusoidal Model (CSM)

$$s(t) = s_v(t) + s_n(t)$$

$$s_{v}^{i}(t) = \sum_{k=1}^{K^{i}} A_{k}^{i}(t) \cos\left(w_{k}^{i}t + \phi_{k}^{i}(t)\right)$$
, $w_{k}^{i} = 2\pi k (contF0)^{i}$

where $A_k(t)$ and $\phi_k(t)$ are the amplitude and phase at frame i, t = 0, 1, ..., N and N is the length of the synthesis frame. *K* is the time-varying number of harmonics that depends on the contF0 and MVF:

$$K^{i} = \begin{cases} round\left(\frac{MVF^{i}}{contF0^{i}}\right) - 1, & voiced \ frames \\ 0, & unvoiced \ frames \end{cases}$$

If the current frame is voiced, the synthesized noise part n(t) is filtered by a high-pass filter $f_h(t)$ with cutoff frequency equal to the local MVF, and then modulated by its time-domain envelope e(t) [Al-Radhi et al., 2017]. For unvoiced frames, the harmonic part is obviously zero and the synthetic frame is typically equal to the generated noise.

$$s_n^i(t) = e^i(t) \left[f_h^i(t) * n^i(t) \right]$$

Evaluation

Experimental Conditions

English speaker from CMU-ARCTIC database [Kominek and Black, 2003]

- SLT (American English, female)
- AWB (Scottish English, male)
- > Waveform sampling rate of the database is 16 kHz
- >100 sentences from each speaker were analyzed and synthesized with below

vocoders:

- Baseline
- Proposed
- STRAIGHT
- WORLD
- > Metrics:
 - Itakura-Saito distance
 - frequency-weighted segmental SNR
 - Extended Short-Time Objective Intelligibility

A) Objective evaluation

Vocoder	IS		fwSNRseg		ESTOI	
	AWB	SLT	AWB	SLT	AWB	SLT
Baseline	0.148	0.447	6.987	7.940	0.517	0.676
Proposed (CSM)	0.058	0.082	9.560	11.034	0.749	0.867
WORLD	0.016	0.014	13.312	13.336	0.808	0.951
TANDEM-STRAIGHT	0.065	0.042	11.840	14.641	0.772	0.933

Vocoder	Parameter per frame	Excitation
Proposed (CSM)	F0: 1 + MVF: 1 + MGC: 24	Mixed
WORLD	F0: 1 + Band aperiodicity: 5 + MGC: 60	Mixed
TANDEM-STRAIGHT	F0: 1 + Aperiodicity: 2048 + Spectrum: 2048	Mixed

Continuous Sinusoidal Model (CSM) has few parameters and is computationally feasible; therefore, it is suitable for real-time operation.

B) Subjective evaluation

- MUSHRA: enables evaluation of multiple samples in a single trial without breaking the task into many pairwise comparisons.
- reference: natural speech
- anchor: pulse-noise excitation
- 60 utterances were included in the test (2 speaker x 6 types x 5 sentences)
- 13 participants (7 males, 6 females) with an age range of 20-42 years
- The test took 15 minutes to fill

B) Subjective evaluation

CSM was slightly preferred over TANDEM-STRAIGHT (not significant), showing that the sinusoidal extension of our vocoder is similar to state-of-the-art high quality vocoders.

Online samples: http://smartlab.tmit.bme.hu/specom2018

Summary and Future plans

✓ Continuous Sinusoidal Model (CSM) generates higher output speech quality.

✓ The proposed vocoder were preferred over TANDEM-STRAIGHT.

Continuous vocoder has fewer parameters

- computationally feasible
- suitable for real-time operation

✓ For future work, the authors plan to train and evaluate all continuous parameters (F0, MVF, and MGC) using deep learning algorithm such as feedforward and recur-rent neural networks to test the proposed vocoder in SPSS.

Key reference

- Garner, P. N., Cernak, M., and Motlicek, P., "A simple continuous pitch estimation algorithm," IEEE Signal Processing Letters, vol. 20, no. 1, pp. 102-105, 2013.
- Drugman, T., and Stylianou, Y., "Maximum Voiced Frequency Estimation : Exploiting Amplitude and Phase Spectra," IEEE Signal Processing Letters, vol. 21, no. 10, p. pp. 1230–1234, 2014.
- Mohammed Salah Al-Radhi, Tamás Gábor Csapó, and Géza Németh, "Time-domain envelope modulating the noise component of excitation in a continuous residual-based vocoder for statistical parametric speech synthesis," Interspeech, vol. Stockholm, no., pp. 434-438, 2017.
- □ Tokuda K., Kobayashi T., Masuko T., and Imai S., "Mel-generalized cepstral analysis a unified approach to speech spectral estimation," in Proc. of the ICSLP, p. 1043–1046, 1994.
- Kominek, J., and Black, A.W., "CMU ARCTIC databases for speech synthesis," Carnegie Mellon University, 2003.
- Ma J., Hu Y., and Loizou P., "Objective measures for predicting speech intelligibility in noisy conditions based on new band-importance functions," Acoustical Society of America, vol. 125, no. 5, pp. 3387-3405, 2009.

Thank you very much for your attention !

malradhi@tmit.bme.hu

GPU EDUCATION CENTER