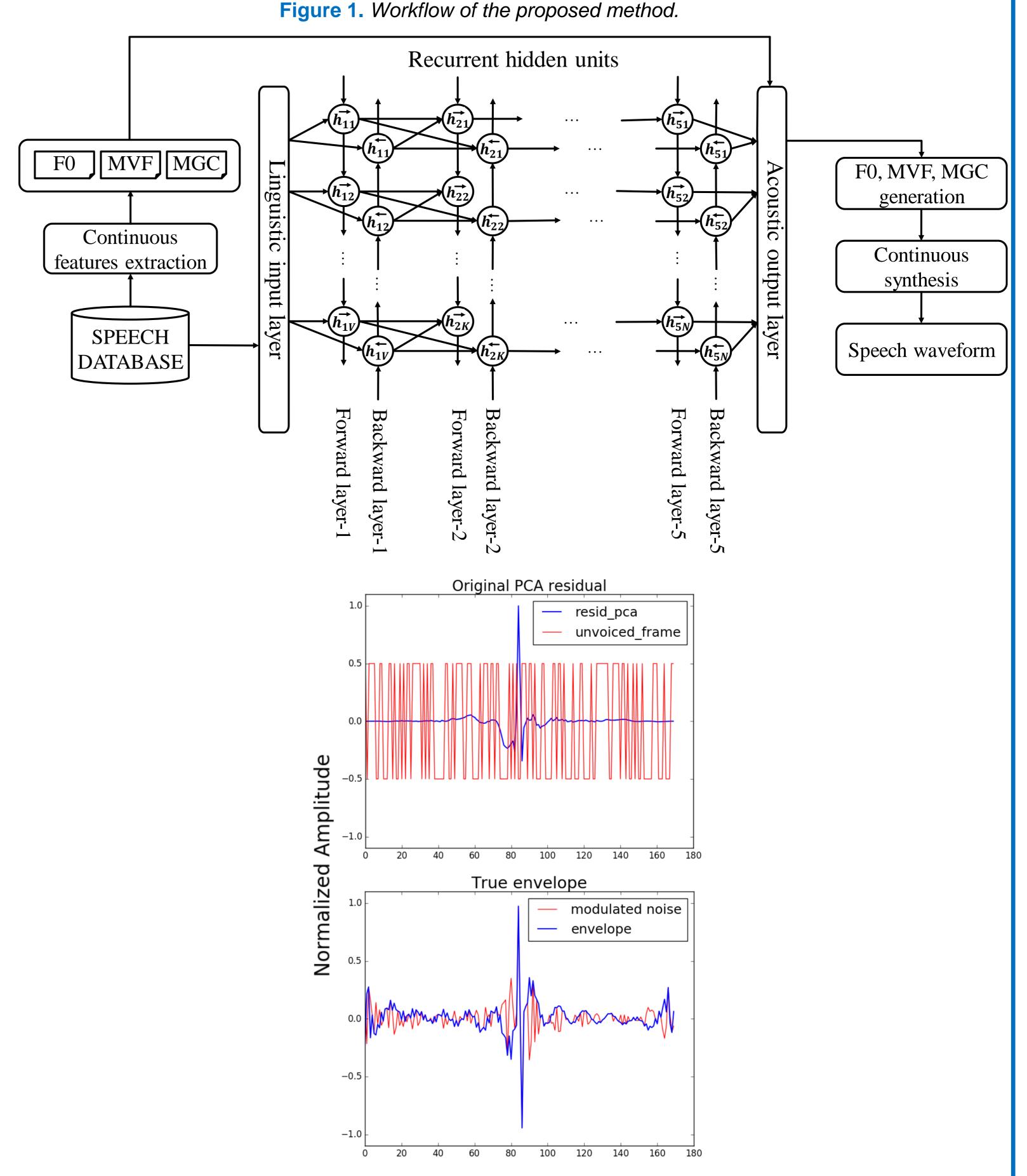
Deep Recurrent Neural Networks in Speech Synthesis Using a **Continuous Vocoder**

Budapest University of Technology and Economics, **Department of Telecommunications and Media** Informatics (BME TMIT), Budapest, Hungary Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, {malradhi,csapot,nemeth}@tmit.bme.hu


1. Introduction

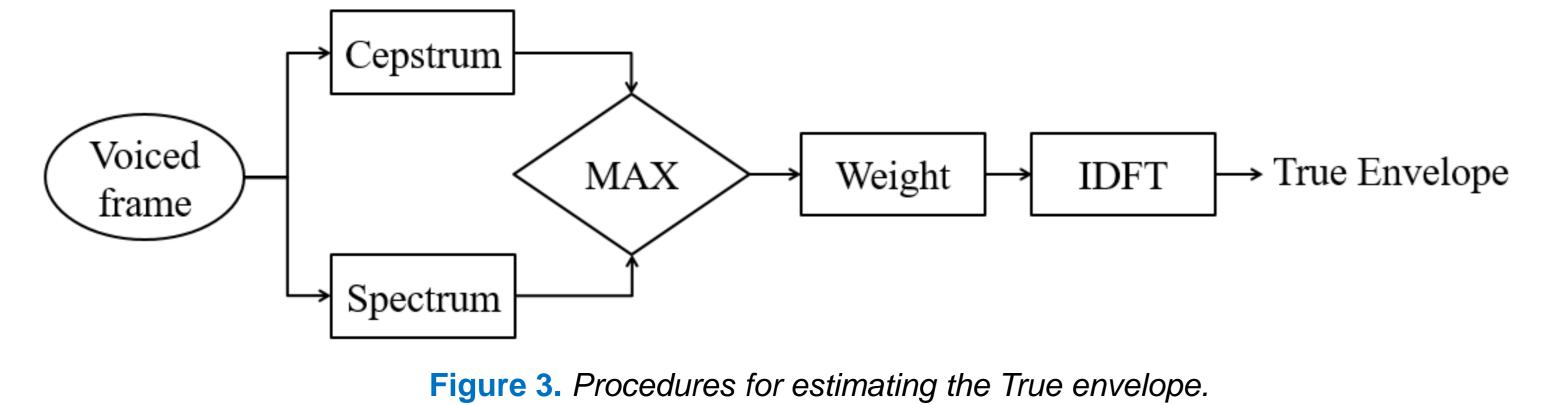
- vocoder problems
 - buzziness
 - real-time processing
- fundamental frequency (F0)
 - continuous in voiced regions
 - discontinuous in unvoiced regions
- hard to model boundaries between voiced and unvoiced segments maximum voiced frequency (MVF)
- Feed-forward deep neural network
 - in [1], we proposed a vocoder using continuous F0 in combination with MVF, which was successfully used with a feed-forward DNN based text-to-speech (TTS).
 - according to [2], DNNs have a lack of sequence modeling and ability to predict variances which might degrade the quality of synthesized speech
 - goal of this paper
 - Spectral envelope refinement
 - propose the use of sequence-to-sequence acoustic modeling with recurrent neural networks (RNNs). four RNN architectures are investigated and applied using this continuous vocoder to model F0, MVF, and proposed MGC

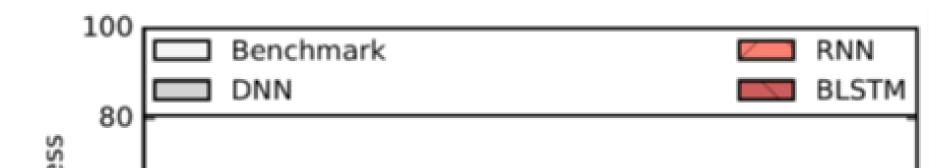
- excitation parameter
- separate the voiced and unvoiced components
- standard Mel-Generalized Cepstral analysis (MGC)

2. Methods

- **Continuous vocoder (baseline [1])**
 - continuous F0 model [3] to decrease the disturbing effect of creaky voice
 - standard autocorrelation
 - no voiced/unvoiced decision
 - Kalman smoothing-based interpolation
 - MVF to model the voiced/unvoiced characteristics of sounds [4]
- **Spectral envelope estimator**
- CheapTrick algorithm [5]: accurate and temporally stable spectral envelope
 - F0-adaptive Hanning window
 - smoothing of the power spectrum
 - spectral recovery in the quefrency domain
- Noise component
 - shaping the high-frequency component by adding envelope modulated noise to the voiced excitation
- True envelope [6]
 - the original spectrum signal and the current cepstral representation are maximized (see Fig. 2).
 - weighting factor makes the convergence more closely to the natural speech. In practice, the most successful weighting factor is 10 (see Fig. 3).
- Acoustic modeling using RNN (see Fig. 1)
- applied a hyperbolic tangent activation function

- lower error rates and faster convergence
- 4 feed-forward hidden lower layers of 1024 units each, followed by a single top layer with 512 units as:
 - Long short-term memory (LSTM)
- Bidirectional LSTM (B-LSTM)
- Gated recurrent unit (GRU)
- Hybrid RNN




Figure 2. Illustration the effect of applying the time envelope.

3. Objective evaluation

- Data: from CMU-ARCTIC
 - AWB (Scottish English, male) and SLT (American English, female)
 - 90% of the sentences were used for training and the rest was used for testing
- RMS Log Spectral Distance
 - root mean square (RMS) log spectral distance (LSD) evaluation was carried out
 - LSD is getting lower by using CheapTrick spectral algorithm than the simple spectral algorithm used in the baseline vocoder (see Fig. 4).

4. Perceptual evaluation

- Multi-Stimulus test with Hidden Reference and Anchor (MUSHRA)
- 11 participants (mean age: 35 years) with engineering background
- rate from 0 (highly unnatural) to 100 (highly natural)
- both recurrent networks outperformed the DNN system (see Fig. 5)
- the BLSTM system reached the best naturalness scores

Empirical measures (see Ta

- Mel-Cepstral Distortion
- Root mean squared error
- **Overall validation error**
- The correlation measure

Comparison of th Figure 4. spectrums synthesized by continuous vocoder. The senten made sure that the magazine was i resumed his paddling." from speake

MCD (dB)

AWB

4.592

4.589

4.649

4.503

4.516

SLT

4.923

4.825

4.879

4.717

5.064

0.027

0.028

0.028

0.026

0.028

_		`									
ee Table 1) tion error ror			Natural Spectrum (dB)								
SUre f th	e spe	ech (Hz)	⁶⁴ Baseline Spectrum (dB) (T) 4096 2048 h 2048 1024 512 256 128 64 0 Proposed Spectrum (dB)								
by proposed [–] ⁰ entence is "He											
	oaded, er SLT.	and	4096 2048 1024 512 256 128 64						LSD = 0.92		
			0	0.5	1	1.5	2 Time (s)	2.5	3	3.5	
MVF (dB) F0 (Hz)			CO	CORR		Validation error					
SLT	AWB	SLT	AWB	SLT	AWB	SLT	AWB				
0.027	0.028	17.569	22.792	0.727	0.803	1.543	1.652				
	0.029	17.377	23.226	0.732	0.793	1.526	1.638	Table	1 (Dbjective	
0.028			23.337	0.731	0.791	1.529	1.643	measur		for all	
).028).028	0.029	17.458	23.337							_	
	0.029 0.027	17.458 17.109	22.191	0.746	0.809	1.517	1.632	training	syste	ems.	

Key references

Systems

DNN (baseline)

LSTM

GRU

B-LSTM

Hybrid-RNN

[1] T. G. Csapó, G. Németh, M. Cernak, and P. N. Garner, "Modeling Unvoiced Sounds In Statistical Parametric Speech Synthesis with a Continuous Vocoder," in EUSIPCO, Budapest, pp. 1338-1342, 2016.

[2] Zen H., and Senior A., "Deep mixture density networks for acoustic modeling in statistical parametric speech synthesis," ICASSP, pp. 3844-3848, 2014.

[3] P. N. Garner, M. Cernak, and P. Motlicek, "A simple continuous pitch estimation algorithm," IEEE Signal Processing Letters, vol. 20, no. 1, pp. 102-105, 2013.

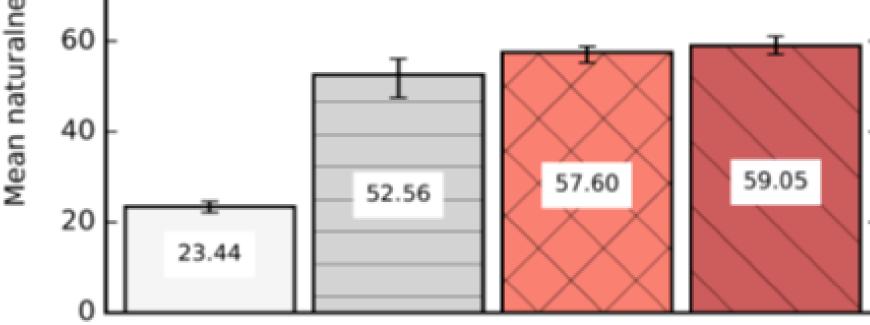


Figure 5. Results of the MUSHRA listening test for the naturalness question. Error bars show the boot-strapped 95% confidence intervals.

5. Discussion and Conclusion

- this work aims to apply a Continuous vocoder in recurrent neural network for more natural sounding speech synthesis
- it can be concluded that the BLSTM network converges faster and achieves better performance than others.
- plans of future research involve adding a Harmonics-to-Noise Ratio parameter to the analysis, statistical learning and synthesis steps in order to further reduce the buzziness caused by vocoding

Acknowledgements

The research was partly supported by the VUK (AAL-2014-1-183) and the EUREKA / DANSPLAT projects. We would like to thank the listeners participating in the test.

[4] T. Drugman and Y. Stylianou, "Maximum Voiced Frequency Estimation : Exploiting Amplitude and Phase Spectra," IEEE Signal Processing Letters, vol. 21, no. 10, pp. 1230–1234, 2014.

[5] M. Morise, "CheapTrick, a spectral envelope estimator for high-quality speech synthesis," Speech Communication, vol. 67, pp. 1-7, 2015.

[6] A. Röbel and X. Rodet, "Efficient spectral envelope estimation and its application to pitch shifting and envelope preservation," in International Conference on Digital Audio Effects, Madrid, pp. 30-35, 2005.