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1. Introduction

• vocoder problems

• buzziness

• real-time processing

• fundamental frequency (F0)

• continuous in voiced regions

• discontinuous in unvoiced regions

• hard to model boundaries between voiced and unvoiced segments

• maximum voiced frequency (MVF)

• excitation parameter 

• separate the voiced and unvoiced components

• standard Mel-Generalized Cepstral analysis (MGC) 

• Feed-forward deep neural network

• in [1], we proposed a vocoder using continuous F0 in combination 

with MVF, which was successfully used with a feed-forward DNN 

based text-to-speech (TTS).

• according to [2], DNNs have a lack of sequence modeling and ability 

to predict variances which might degrade the quality of synthesized 

speech

• goal of this paper

• Spectral envelope refinement

• propose the use of sequence-to-sequence acoustic modeling 

with recurrent neural networks (RNNs).

• four RNN architectures are investigated and applied using this 

continuous vocoder to model F0, MVF, and proposed MGC

2. Methods
• Continuous vocoder (baseline [1])

• continuous F0 model [3] to decrease the disturbing effect of creaky voice

• standard autocorrelation

• no voiced/unvoiced decision

• Kalman smoothing-based interpolation

• MVF to model the voiced/unvoiced characteristics of sounds [4]

• Spectral envelope estimator

• CheapTrick algorithm [5]: accurate and temporally stable spectral envelope

• F0-adaptive Hanning window

• smoothing of the power spectrum

• spectral recovery in the quefrency domain

• Noise component

• shaping the high-frequency component by adding envelope modulated 

 noise to the voiced excitation

• True envelope [6]

• the original spectrum signal and the current cepstral representation are 

maximized (see Fig. 2). 

• weighting factor makes the convergence more closely to the natural speech. 

In practice, the most successful weighting factor is 10 (see Fig. 3). 

• Acoustic modeling using RNN (see Fig. 1)

• applied a hyperbolic tangent activation function

• lower error rates and faster convergence

• 4 feed-forward hidden lower layers of 1024 units each, followed by a single 

 top layer with 512 units as:

• Long short-term memory (LSTM)

• Bidirectional LSTM (B-LSTM)

• Gated recurrent unit (GRU)

• Hybrid RNN

Figure 1. Workflow of the proposed method.

Figure 3. Procedures for estimating the True envelope.

3. Objective  evaluation

• Data: from CMU-ARCTIC

• AWB (Scottish English, male) and SLT (American English, female)

• 90% of the sentences were used for training and the rest was used for testing

• RMS - Log Spectral Distance

• root mean square (RMS) log spectral distance (LSD) evaluation was carried out

• LSD is getting lower by using CheapTrick spectral algorithm than the simple 

spectral algorithm used in the baseline vocoder (see Fig. 4). 

• Empirical measures (see Table 1)

• Mel-Cepstral Distortion 

• Root mean squared error 

• Overall validation error

• The correlation measures

Table 1. Objective 

measures for all 

training systems.

4. Perceptual evaluation 

• Multi-Stimulus test with Hidden Reference and Anchor (MUSHRA)

• 11 participants (mean age: 35 years) with engineering background

• rate from 0 (highly unnatural) to 100 (highly natural)

• both recurrent networks outperformed the DNN system (see Fig. 5)

• the BLSTM system reached the best naturalness scores 

Figure 5. Results of the MUSHRA listening test for the naturalness question. Error bars show the 

boot-strapped 95% confidence intervals. 
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Figure 2. Illustration the effect of applying the time envelope.

Systems

MCD (dB) MVF (dB) F0 (Hz) CORR Validation error

SLT AWB SLT AWB SLT AWB SLT AWB SLT AWB

DNN (baseline) 4.923 4.592 0.027 0.028 17.569 22.792 0.727 0.803 1.543 1.652

LSTM 4.825 4.589 0.028 0.029 17.377 23.226 0.732 0.793 1.526 1.638

GRU 4.879 4.649 0.028 0.029 17.458 23.337 0.731 0.791 1.529 1.643

B-LSTM 4.717 4.503 0.026 0.027 17.109 22.191 0.746 0.809 1.517 1.632

Hybrid-RNN 5.064 4.516 0.028 0.027 18.232 22.522 0.704 0.805 1.547 1.627

Figure 4. Comparison of the speech 

spectrums synthesized by proposed 

continuous vocoder. The sentence is “He 

made sure that the magazine was loaded, and 

resumed his paddling.” from speaker SLT. 5. Discussion and Conclusion
• this work aims to apply a Continuous vocoder in recurrent neural network for 

more natural sounding speech synthesis

• it can be concluded that the BLSTM network converges faster and achieves 

better performance than others.

• plans of future research involve adding a Harmonics-to-Noise Ratio parameter 

to the analysis, statistical learning and synthesis steps in order to further 

reduce the buzziness caused by vocoding
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