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Summary 

A time reduction of approximately 98% in the curve-fitting phase is achieved by 

the automated framework developed in this thesis. This significant efficiency gain is 

utilized to streamline the characterization of power semiconductor devices, such as 

Insulated Gate Bipolar Transistors (IGBTs) and Metal-Oxide-Semiconductor Field-

Effect Transistors (MOSFETs), thereby transforming a historically labor-intensive 

process into a reproducible and rapid workflow. The characterization of these power 

semiconductor devices, constitutes a critical phase in the development of modern power 

electronics. To ensure reliability and efficiency, Development Lab Engineers at Infineon 

Technologies generate vast quantities of experimental measurement data that must be 

synthesized into accurate Data-Sheets. However, the transition from raw measurement 

files to finalized, mathematically consistent diagrams is historically a fragmented, 

manual, and time-consuming process, prone to variability and human error. 

The objective of this thesis is to streamline this workflow by transforming an 

existing MATLAB-based analysis tool into a generalized, template-driven framework. 

The primary engineering contribution of this work is the design and implementation of a 

flexible XML-based configuration system. This architecture allows engineers to 

externalize the logic for data filtering, unit scaling, and diagram definition, thereby 

ensuring reproducibility across different device types without requiring modification to 

the source code. 

Furthermore, the analytical capabilities of the software were significantly 

enhanced to support the autonomous modeling of non-linear semiconductor physics. A 

Tikhonov-regularized solver was implemented with a coordinate transformation engine, 

enabling the robust fitting of exponential and power-law behaviors. To eliminate the 

subjectivity of manual parameter tuning, a Hyperparameter Autotuning algorithm was 

developed. This feature utilizes a Modified Akaike Information Criterion (AICc)—

incorporating specific penalties for model complexity and rewards for physical 

constraints—to automatically select the optimal mathematical model. The developed tool 

successfully reduces manual intervention and significantly accelerates the Data-Sheet 

generation process while guaranteeing high standards of analytical consistency. 
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 Résumé 

Une réduction du temps d'environ 98 % lors de la phase d'ajustement de courbe 

est obtenue grâce au cadre automatisé développé dans cette thèse. Ce gain d'efficacité 

significatif est mis à profit pour rationaliser la caractérisation des dispositifs semi-

conducteurs de puissance, tels que les transistors bipolaires à grille isolée (IGBT) et les 

transistors à effet de champ à structure métal-oxyde-semi-conducteur (MOSFET), 

transformant ainsi un processus historiquement laborieux en un flux de travail rapide et 

reproductible. La caractérisation de ces dispositifs constitue une étape cruciale dans le 

développement de l'électronique de puissance moderne. Afin de garantir fiabilité et 

efficacité, les ingénieurs des laboratoires de développement chez Infineon Technologies 

génèrent de vastes quantités de données de mesure expérimentales qui doivent être 

synthétisées en fiches techniques précises. Cependant, la transition des fichiers de 

mesures brutes vers des diagrammes finalisés et mathématiquement cohérents est 

historiquement un processus fragmenté, manuel et chronophage, sujet à la variabilité et 

aux erreurs humaines. 

L'objectif de cette thèse est de rationaliser ce flux de travail en transformant un 

outil d'analyse existant sous MATLAB en un cadre généralisé piloté par des modèles. La 

principale contribution technique de ce travail réside dans la conception et la mise en 

œuvre d'un système de configuration flexible basé sur XML. Cette architecture permet 

aux ingénieurs d'externaliser la logique de filtrage des données, de mise à l'échelle des 

unités et de définition des diagrammes, assurant ainsi une reproductibilité entre différents 

types de dispositifs sans nécessiter de modification du code source. 

De plus, les capacités analytiques du logiciel ont été considérablement améliorées 

pour permettre la modélisation autonome de la physique non linéaire des semi-

conducteurs. Un solveur régularisé de Tikhonov a été implémenté conjointement avec un 

moteur de transformation de coordonnées, permettant l'ajustement robuste des 

comportements exponentiels et des lois de puissance. Afin d'éliminer la subjectivité du 

réglage manuel des paramètres, un algorithme de réglage automatique des 

hyperparamètres a été développé. Cette fonctionnalité exploite un Critère d'Information 

d'Akaike corrigé (AICc) modifié intégrant des pénalités spécifiques pour la complexité 

du modèle et des récompenses pour le respect des contraintes physiques, pour sélectionner 
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automatiquement le modèle mathématique optimal. L'outil développé réduit avec succès 

les interventions manuelles et accélère significativement le processus de génération des 

fiches techniques, tout en garantissant des normes élevées de cohérence analytique. 
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1 Introduction 

Background and Motivation 

The continuous evolution of power electronics is a driving force behind the global 

transition towards higher energy efficiency. Modern applications, ranging from electric 

vehicle traction inverters to renewable energy grid integration, place increasingly 

stringent demands on power semiconductor devices. Consequently, the characterization 

and verification of components such as Insulated Gate Bipolar Transistors (IGBTs) and 

Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) have become critical 

phases in the product development lifecycle [1][8]. Companies like Infineon 

Technologies operate at the forefront of this field, ensuring that every component meets 

rigorous performance and reliability standards before reaching the market. 

A central output of this characterization process is the device Data-Sheet. This 

comprehensive document serves as the primary reference for system designers, providing 

essential thermal, electrical, and switching characteristics derived from extensive 

experimental measurements, often standardized by international electrotechnical 

guidelines [9]. Development laboratory engineers generate vast quantities of raw data by 

testing devices under a wide spectrum of operating conditions, including varying 

temperatures, gate voltages, and load currents, as defined in standard switching loss 

protocols [10]. The accuracy and clarity of the diagrams presented in these Data-Sheets 

are paramount, as they directly influence the design decisions made by engineers 

worldwide [22]. 

However, the transition from raw experimental measurement data to publication-

ready diagrams is a complex and historically labor-intensive process. Raw measurement 

files, typically generated by high-speed oscilloscopes and data loggers, often contain 

significant noise and are recorded in base SI units that differ from the engineering units 

required for documentation. Furthermore, the data often represents a mix of distinct 

system states, such as high-side versus low-side switching events in a half-bridge 

configuration that must be meticulously separated before analysis. When performed 

manually, the tasks of filtering, scaling, and curve fitting are not only time-consuming 

but also prone to human error, potentially introducing inconsistencies into the final 

documentation. 
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Problem Statement 

While software tools exist to assist with data visualization, the standard workflows 

often lack the flexibility required to keep pace with the rapidly expanding variety of 

device architectures. The legacy analysis framework utilized within the laboratory 

provided a stable architectural foundation but relied on static, hardcoded configurations 

optimized for specific device types. As the scope of characterization expanded to include 

novel MOSFET topologies and increasingly complex measurement protocols, the rigidity 

of this approach became a bottleneck. Engineers were frequently required to request 

software modifications for routine configuration changes, creating a dependency that 

slowed the analysis cycle. 

A significant challenge within this workflow is the mathematical modeling of 

device characteristics. Experimental data is inherently noisy, and fitting smooth curves to 

this data is essential for extracting meaningful parameters. In a manual workflow, finding 

the optimal mathematical model involves a trial-and-error process where the engineer 

must iteratively adjust polynomial orders and smoothing factors. This approach relies 

heavily on user intuition, leading to a lack of reproducibility; different engineers might 

produce slightly different curves for the same dataset. 

Furthermore, standard polynomial fitting methods are frequently insufficient for 

the robust modeling of non-linear physical behaviors, such as exponential leakage 

currents or power-law switching energy distributions. Consequently, significant manual 

intervention is required to constrain the generated curves into physically plausible 

trajectories. From a numerical perspective, the approximation of these complex behaviors 

using high-order polynomials on noisy data is recognized as an ill-posed problem [2][7]. 

This formulation often results in numerical instability and overfitting, thereby limiting 

the reliability of the analysis. 

Objectives 

The primary objective of this thesis is to design and implement a comprehensive 

extension to the existing Data-Sheet Analysis Tool, transforming it into a generalized, 

automated framework. The work aims to eliminate the bottlenecks associated with 

manual data processing by introducing a flexible, template-driven architecture. This 

system allows laboratory engineers to define complex analysis logic—including data 
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filtering, unit scaling, and diagram definition—via external configuration files, thereby 

decoupling the analysis parameters from the compiled source code. 

Technically, the project seeks to enhance the analytical capabilities of the software 

by integrating advanced mathematical processing engines. A key goal is the 

implementation of a robust solver capable of handling logarithmic coordinate 

transformations, ensuring that non-linear semiconductor physics can be modeled 

accurately. Furthermore, the thesis aims to develop an intelligent Hyperparameter 

Autotuning algorithm. By utilizing a modified statistical selection criterion, this algorithm 

is designed to automatically identify the optimal curve-fitting configuration that balances 

mathematical accuracy with adherence to physical constraints, such as monotonicity and 

positivity. The ultimate goal is to provide a tool that significantly accelerates the Data-

Sheet generation process while guaranteeing high standards of consistency and 

reproducibility. 

Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 provides a detailed 

analysis of the task, examining the state of the art of the existing software architecture 

and specifying the functional requirements for the extended framework. Chapter 3 

outlines the theoretical preliminaries, deriving the mathematical formulations for 

Tikhonov regularization, the coordinate transformations used for logarithmic fitting, and 

the statistical criteria for model selection. Chapter 4 details the design and implementation 

of the engineering solution, describing the development of the XML template parser, the 

extended mathematical engine, and the autotuning algorithm. Chapter 5 presents the 

evaluation of the tool, verifying the automation framework and quantifying the 

improvements in analytical accuracy and workflow efficiency through test cases using 

real-world MOSFET data. Chapter 6 offers a critical assessment of the completed work, 

discussing the challenges encountered and potential areas for future development. Finally, 

Chapter 7 summarizes the contributions of the thesis. 
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2 Problem Analysis and Requirements 

State of the Art 

The software framework initially utilized by the development laboratory was built 

upon the MATLAB App Designer platform [19], providing a graphical environment for 

the post-processing of semiconductor measurement data. The architectural backbone of 

this application was a reactive node system, a design pattern that manages data 

dependencies through a directed acyclic graph. In this architecture, data flows from 

source nodes (file loaders) to calculation nodes (scalers, filters) and finally to presentation 

nodes (tables, diagrams). A key strength of this existing architecture was its 

implementation of lazy evaluation [17]; mathematical operations were executed only 

when the final output was explicitly requested by the user, ensuring that the application 

remained responsive even when varying large datasets. 

In terms of user experience, the legacy interface was designed around a linear, 

procedural workflow, adhering to standard interaction design patterns [21]. The user was 

required to navigate sequentially through a series of tabs, progressing from left to right. 

The process began with data loading, followed by a manual configuration step where 

specific measurement parameters were entered into a fixed form. 1. Figure illustrates this 

legacy "Template Selection" interface. The design relied on a pre-defined set of input 

fields specifically tailored to established technologies, such as standard IGBT modules. 

Users would select the device technology from a dropdown menu, which would populate 

the interface with a static set of variables required for that specific device type. 
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1. Figure: Legacy Template Selection Interface. 

Workflow Challenges 

Despite the robustness of the underlying reactive architecture, the operational 

workflow exhibited significant scalability challenges as the scope of device 

characterization expanded. The primary limitation was the rigid coupling between the 

measurement definition and the application source code. As demonstrated in 1.Figure, the 

template logic—defining which variables were required and how they should be 

processed—was hardcoded within the application. This meant that the tool offered no 

intrinsic flexibility for the end-user to customize the analysis structure. If a new 

measurement protocol was introduced, or if a novel device architecture (such as a 

MOSFET with complex body-diode behavior) required additional parameters not present 

in the standard IGBT form, the software source code had to be manually modified and 

recompiled. This dependency created a bottleneck, preventing laboratory engineers from 

autonomously adapting the tool to evolving test requirements. 

Furthermore, the data conditioning phase represented a substantial manual 

overhead. In the legacy workflow, the segmentation of raw data—distinguishing between 
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different system states or operating modes—required interactive user intervention. 

Engineers had to manually configure filtering parameters for each session, a process that 

was not only time-consuming but also susceptible to human error. Similarly, the 

mathematical analysis of the curves was a "human-in-the-loop" process. The user was 

required to inspect each curve visually and manually adjust fitting parameters to achieve 

a satisfactory representation. This trial-and-error approach introduced latency and 

potential inconsistency, as the criteria for a "good fit" were subjective and dependent on 

the individual engineer’s judgment. 

Requirements Specification 

To address these limitations and transform the specialized tool into a generalized 

analysis framework, a comprehensive set of functional requirements was defined. The 

overarching objective was to decouple the analysis logic from the application logic, 

thereby enabling a fully data-driven workflow. 

The primary requirement was the design and implementation of a flexible, XML-

based templating system. The application was required to parse external configuration 

files that define the complete analysis context. This includes the definition of user inputs, 

the rules for unit scaling and data normalization, and the logic for system state filtering. 

By externalizing these definitions, the tool would allow engineers to create and modify 

analysis templates without altering the codebase. The workflow was to be streamlined 

such that a user could simply load a raw data file and an XML template, after which the 

system would automatically propagate the configuration to all downstream processes, 

populating tables and diagrams instantaneously. 

Mathematically, the system required significant enhancement to support the 

autonomous modeling of non-linear semiconductor physics. The linear solver needed to 

be extended to support logarithmic coordinate transformations, enabling the robust fitting 

of exponential and power-law behaviors that are characteristic of modern power devices. 

Furthermore, to eliminate the subjectivity of manual fitting, the software required an 

intelligent Hyperparameter Autotuning algorithm. This algorithm was required to 

automatically explore the search space of possible mathematical models—varying 

polynomial orders, coordinate systems, and physical constraints—and select the optimal 

configuration based on a statistically rigorous criterion. The combination of these features 
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aimed to produce a "one-click" analysis experience, where the software delivers 

publication-ready diagrams immediately upon template application. 
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3 Theoretical Preliminaries 

This chapter outlines the mathematical foundations that underpin the analytical 

capabilities of the developed software framework. To ensure the accurate extraction of 

physical parameters from noisy experimental data, the system relies on advanced 

regularization techniques, domain-specific coordinate transformations, and statistical 

model selection criteria. The following sections derive the mathematical formulations 

used to ensure both numerical stability and physical plausibility in the curve-fitting 

process. 

Regularized Least Squares (Tikhonov Regularization) 

The core analytical task involves approximating a smooth scalar function 𝑓(𝑥) 

given a set of discrete, noisy measurement pairs (𝑥𝑖, 𝑦𝑖) where 𝑖 = 1,2, . . . , 𝑁. In the 

context of semiconductor characterization, the data often contains stochastic noise 

derived from high-speed switching events. A standard Ordinary Least Squares (OLS) 

approach seeks to minimize the sum of squared residuals between the model and the 

observations. However, when high-order polynomials are used to approximate complex 

behaviors, the OLS formulation becomes an ill-posed problem [2]. This frequently leads 

to overfitting, where the fitted curve exhibits high-frequency oscillations—known as 

Runge’s phenomenon—at the boundaries of the domain to minimize the residual error of 

specific noise points. 

To mitigate this instability, the mathematical engine employs Tikhonov 

Regularization. Instead of minimizing the residual error in isolation, the algorithm 

minimizes a composite cost function 𝐽 that includes a regularization term penalizing the 

complexity or "roughness" of the solution. The continuous form of the objective function 

is defined as: 

𝐽(𝑝) = 𝛴𝑖=1
𝑁 𝑤𝑖(𝑦𝑖 −  𝑓(𝑥𝑖))

2
+  𝜆 ∫ (

𝑑𝑚𝑓

𝑑𝑥𝑚
)

2

𝑑𝑥 

In this formulation, 𝑤𝑖 represents the weight assigned to each data point, allowing 

for the prioritization of specific measurement ranges. The second term represents the 

regularization penalty, where 𝜆 ≥ 0 is the Tikhonov factor (smoothing parameter). The 

integral measures the energy of the 𝑚 − 𝑡ℎ derivative of the function. For this application, 
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the second derivative (𝑚 = 2) is utilized to penalize curvature, thereby favoring smoother 

trajectories that are physically characteristic of thermal and electrical semiconductor 

responses. 

To solve this numerically, the problem is discretized. The function 𝑓(𝑥) is 

approximated by a polynomial of degree 𝑘, which can be expressed as a linear 

combination of basis functions (powers of 𝑥). The optimization problem is then 

formulated in matrix notation. Let 𝑦 be the vector of observed values and 𝑉 be the 

Vandermonde matrix [12] where 𝑉𝑖𝑗 = 𝑥𝑖
𝑗
. The coefficients 𝑐 of the polynomial are 

determined by minimizing the discrete form of the cost function, a variation of the 

standard linear least squares problem [13]: 

𝐽(𝑐)  =  || 𝑊1/2 (𝑦 −  𝑉𝑐) ||2
2  +  𝜆 || 𝐿𝑐 ||2

2 

Here, 𝑊 is the diagonal weight matrix, and 𝐿 is the Tikhonov matrix, which 

represents the discrete difference operator corresponding to the second derivative. The 

minimization of this quadratic form, subject to linear inequality constraints (such as 

positivity or monotonicity), constitutes a Quadratic Programming (QP) problem. The 

solver identifies the optimal coefficient vector 𝑐 that satisfies the physical constraints 

while minimizing the weighted sum of the residual error and the curvature penalty. 

Coordinate Transformations and Logarithmic Linearization 

While Tikhonov regularization ensures numerical stability for polynomial fitting, 

the fundamental physical characteristics of semiconductor devices often adhere to non-

linear laws that are not optimally approximated by polynomials in a Cartesian coordinate 

system. For instance, switching energy losses (𝐸𝑟𝑒𝑐) frequently scale with gate resistance 

according to a power law, whereas leakage currents typically exhibit an exponential 

dependence on temperature or voltage. To extend the applicability of the linear Tikhonov 

solver to these non-linear domains, a Coordinate Transformation Engine was 

implemented. This methodology relies on the principle of linearization, wherein the 

original data space 𝐷 is mapped to a feature space 𝐹 via a bijective transformation 

𝛷(𝑥, 𝑦) → (𝑢, 𝑣). The polynomial fitting is subsequently executed within this feature 

space, and the result is mapped back to the original domain via the inverse transformation 

Φ−1. 
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To address power-law relationships of the form 𝑦 = 𝐴𝑥𝑘. the Log-Log 

transformation is utilized. Linearization is achieved by taking the natural logarithm of 

both sides, yielding the equation: 

𝑙𝑛(𝑦) = 𝑙𝑛(𝐴) + 𝑘 ⋅ 𝑙𝑛(𝑥) 

The transformation is defined as 𝑢 = 𝑙𝑛(𝑥) and 𝑣 = 𝑙𝑛(𝑦). In this space, a first-

order polynomial 𝑃(𝑢) = 𝑐1𝑢 + 𝑐0 corresponds directly to the physical parameters, 

where the slope 𝑐1 represents the exponent 𝑘, and the intercept 𝑐0 corresponds to 𝑙𝑛(𝐴). 

This transformation allows the linear solver to determine the exponent of the power law 

deterministically without requiring iterative non-linear optimization methods. 

Analogously, exponential relationships of the form 𝑦 = 𝐴𝑒𝐵𝑥 are modeled via the 

Semi-Log Y transformation. The linearization is achieved by taking the logarithm of the 

dependent variable: 

𝑙𝑛(𝑦) = 𝑙𝑛(𝐴) + 𝐵 ⋅ 𝑥 

The mapping is defined as 𝑢 = 𝑥 and 𝑣 = 𝑙𝑛(𝑦). A linear fit 𝑣 = 𝑐1𝑢 + 𝑐0 in this 

space maps back to the exponential function, where the coefficient 𝐵 = 𝑐1 and the scaling 

factor 𝐴 = 𝑒𝑐0. This mode is particularly effective for modeling leakage currents or diode 

forward characteristics in the sub-threshold region. Furthermore, for processes that evolve 

over several orders of magnitude in the independent variable, the Semi-Log X 

transformation is employed. The relationship 𝑦 = 𝐴 + 𝐵 ⋅ 𝑙𝑛(𝑥) is linearized by the 

mapping 𝑢 = 𝑙𝑛(𝑥) and 𝑣 = 𝑦. 

It is imperative to note that the mathematical derivations provided above illustrate 

the fundamental first-order cases (𝑃(𝑢) = 𝑐1𝑢 + 𝑐0). However, the mathematical engine 

is not restricted to these linear approximations within the feature space. When the 

polynomial order is increased, the complexity of the back-transformed function increases 

significantly. For example, a second-order fit performed within the Log-Log domain 

corresponds to a function of the form 𝑦 = 𝐴 ∙ 𝑥(𝐵+𝐶 ln 𝑥). This capability allows the 

system to capture subtle variations and second-order effects in the physical data while 

retaining the stability benefits of the Tikhonov solver. By pre-processing the 

measurement vectors x and y into the vectors u and v before constructing the 

Vandermonde matrices, the stable Regularized Least Squares engine described in Section 

0 is effectively reused to solve for non-linear physical parameters. 
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Model Selection Criteria 

Automating the curve-fitting process requires a quantitative metric to compare the 

validity of different mathematical models, such as determining whether a 2nd-order or 

5th-order polynomial provides a superior representation of the data. The standard 

statistical metric for such selection is the Akaike Information Criterion (AIC) [11], which 

estimates the relative information loss of a given model [5]. For datasets with finite 

sample sizes 𝑁, the Corrected AIC (AICc) is preferred to prevent the selection of over-

parameterized models, a correction originally proposed to address bias in small-sample 

statistics [3][14]. The standard formulation for AICc in the context of least squares is: 

𝐴𝐼𝐶𝑐 = 𝑁 ln (
𝑅𝑆𝑆

𝑁
) + 2𝑘 +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1
 

Where 𝑅𝑆𝑆 is the Residual Sum of Squares, and k is the number of estimated 

parameters (polynomial order + 1). However, in the context of datasheet generation, 

properties such as "visual smoothness" and adherence to physical laws are often more 

critical than minimizing the absolute residual error of noisy data. It was observed that the 

standard AICc tends to be too permissible regarding model complexity, frequently 

selecting higher-order polynomials that capture measurement noise rather than the 

underlying physical trend. 

To address this limitation, a Modified 𝐴𝐼𝐶𝑚𝑜𝑑 metric was derived for this 

framework, introducing two empirical hyperparameters: an Alpha factor (𝛼) and a 

Gamma factor (𝛾). The Alpha factor serves as an enhanced complexity penalty. By 

scaling the standard penalty term 2𝑘 by 𝛼. a significantly heavier cost is imposed on 

increasing the polynomial order. The modified 𝐴𝐼𝐶𝑚𝑜𝑑 is formulated as. 

𝐴𝐼𝐶𝑚𝑜𝑑 = 𝑁 ln (
𝑅𝑆𝑆

𝑁
) + 2𝑘α +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1
 

For this application, 𝛼 is set to 10 based on empirical tuning. This high penalty 

ensures that the algorithm rejects higher-order models unless they provide a statistically 

overwhelming improvement in the RSS, thereby biasing the selection towards simpler, 

more robust functions. 

To further prioritize physical plausibility, a reward term is introduced via the 

Gamma factor. If a model configuration successfully converges while satisfying a 
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physical constraint such as Monotonicity or Positivity, the optimization score is reduced 

by the Gamma factor (𝛾). 

𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝛾 ⋅ 𝑁𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

 

 For this implementation, 𝛾 is set to 10. This value was selected to sufficiently 

incentivize the selection of physically constrained models without overriding the 

fundamental data trend if the error becomes too large. Consequently, the final 

optimization score utilized by the Autotuning algorithm combines the modified 

complexity penalty and the constraint reward: 

Final Score = 𝐴𝐼𝐶𝑚𝑜𝑑 − (γ × 𝑁𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

This modified criterion mathematically formalizes the engineering preference for 

simple, monotonic, and physically consistent models. By balancing error reduction with 

strict complexity penalties and constraint rewards, the software is enabled to 

autonomously make decisions that align with expert human judgment. 
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4 Design and Implementation 

This chapter details the software engineering methodologies applied to transform 

the legacy analysis tool into a flexible, template-driven framework. The implementation 

follows a strict Object-Oriented Programming (OOP) paradigm [15] within the MATLAB 

App Designer environment, adhering to principles of clean code architecture [16]. The 

design strategy focused on decoupling the measurement configuration logic from the 

compiled application code, achieved through the development of a custom XML parsing 

engine and the extension of the underlying reactive data flow architecture. 

Overview of the Extended Architecture 

The software is built on a Model-View-Controller (MVC) architecture pattern [6]. 

The View is represented by the App Designer graphical interface, while the Model is 

encapsulated within a Reactive Node System. It is important to note that the base 

CalcNode class and the fundamental concept of the reactive graph were established in a 

previous iteration of the software. The primary architectural contribution of this thesis is 

the design of the Template Controller and the specific implementations of the data 

processing nodes (ScaleNode, SystemFilterNode) that utilize this infrastructure to support 

dynamic reconfiguration. 

The reactive architecture operates on a Directed Acyclic Graph (DAG) principle, 

utilizing a "Pull" mechanism or Lazy Evaluation. In this system, a node does not 

automatically push data to its dependents when a change occurs. Instead, it marks itself 

and its dependents as "dirty." Calculation only occurs when a terminal node (such as a 

Diagram or Table) explicitly requests data. This design is critical for performance, as it 

prevents the unnecessary execution of computationally expensive fitting algorithms 

during intermediate configuration steps. 

The extended data flow hierarchy implemented in this work is structured as 

follows: 

FileNode (Source): This node acts as the entry point, wrapping standard 

MATLAB file I/O operations. It is responsible for loading heterogeneous raw data 

formats (.txt, .csv, .xlsx) and merging them into a unified MATLAB table object. 
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ScaleNode (Intermediate): A dependent node that consumes the raw table from 

FileNode. It applies linear transformations to convert base units into engineering units 

based on injected scaling rules. 

SystemFilterNode (Intermediate): A dependent node that consumes the scaled 

table. It implements a subtractive filtering logic to categorize data rows (e.g., "High-Side" 

vs. "Low-Side") based on boolean masks. 

Diagram and Curve (Terminal): These objects represent the final analytical 

output. They request processed data from the SystemFilterNode and perform the 

mathematical curve fitting. 

The Template Controller, implemented within the main application class 

(CurveFitting.mlapp), acts as the orchestrator. Upon loading an XML template, this 

controller parses the definition and programmatically instantiates and links these nodes, 

effectively rewriting the analysis logic at runtime without requiring a software recompile. 

 

2. Figure: Simplified UML Class Structure diagram 

The XML Template Framework 

To satisfy the primary requirement of generalization, a robust configuration 

system was necessary to decouple the analysis logic from the compiled application code. 

The Extensible Markup Language (XML) [18] was selected as the unified configuration 
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standard for this framework. This design choice was driven by several key technical and 

operational advantages suited to the MATLAB environment and the end-user profile. 

Firstly, the strict hierarchical nature of XML naturally mirrors the nested object-

oriented architecture of the application (e.g., a Diagram contains Sweeps, which contain 

Conditions). This allows the configuration file to be deserialized directly into the runtime 

object graph without complex intermediate mapping. Secondly, the verbose, tag-based 

syntax of XML offers superior human-readability compared to formats such as JSON or 

binary configurations. This is critical for laboratory engineers who must create and 

modify templates manually without a specialized editor. Finally, MATLAB provides 

native support for the W3C Document Object Model (DOM) via the xmlread function, 

enabling efficient, standard-compliant parsing without the need for third-party libraries. 

The application utilizes a custom DOM parser to traverse this structure. The 

parsing logic is divided into functional blocks that process the definition sequentially, 

ensuring that dependencies—such as variable definitions—are resolved before they are 

utilized by downstream components. 

The logical hierarchy of these elements, illustrating the relationship between 

inputs, rules, and visualization objects, is depicted in 3. Figure: XML hierarchy tree. 

 

3. Figure: XML hierarchy tree 
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To demonstrate the practical application of this schema, a minimal configuration 

template designed to generate a single "Switching Energy vs. Current" diagram is 

presented below: 

<?xml version="1.0" encoding="UTF-8"?> 
<CurveFitTemplate> 
    <!-- 1. General Meta-Data --> 
    <Info> 
        <Name>Minimal MOSFET Template</Name> 
        <Version>1.0</Version> 
        <Description>Example Minimal configuration for Thesis 
Documentation</Description> 
    </Info> 
 
    <!-- 2. User Inputs: Variables defining the operating point --> 
    <UserInputs> 
        <Input name="Inom"   column="Ic [A]" /> 
        <Input name="Imax"   column="Ic [A]" /> 
        <Input name="Vcc"    column="Vcc [V]"/> 
        <Input name="TvjMax" column="T [°C]"/> 
        <Input name="Rgon"   column="G1_Rgon [Ohm]"/> 
    </UserInputs> 
 
    <!-- 3. Scaling Rules: Normalization logic (e.g., Joules to mJ) --> 
    <ScalingRules>         
        <Scale newName="Eon [mJ]" oldName="Eon links [J]" scale="1000" 
offset="0" /> 
    </ScalingRules> 
 
    <!-- 4. System Selection: Logic to filter specific measurement rows --> 
    <SystemSelectionRules> 
        <SystemCriterium ChipName="MOSFET" Criterium="Eon [mJ]"> 
            <Condition key="T [°C]"    value="$TvjMax" /> 
            <Condition key="Ic [A]"    value="$Inom" /> 
            <Condition key="Vcc [V]"   value="$Vcc" /> 
            <Condition key="valid"     value="1" /> 
        </SystemCriterium> 
    </SystemSelectionRules> 
 
    <!-- 5. Diagram Definition: Visualization logic --> 
    <Diagrams> 
        <Diagram figureNr="1"> 
            <XAxis>Ic [A]</XAxis> 
            <YAxis>Eon [mJ]</YAxis> 
            <XLimits min="0" max="$Imax" />  
             
            <!-- Global filters for this diagram --> 
            <Conditions> 
                <Condition key="Vcc [V]"    value="$Vcc" /> 
                <Condition key="valid"      value="1" /> 
            </Conditions> 
 
            <!-- Curve families to generate --> 
            <Sweeps> 
                <SweepParameter>T [°C]</SweepParameter> 
                <SweepParameter>Rgon [Ohm]</SweepParameter> 
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                <!-- Curve 1: Nominal Gate Resistor at Max Temp --> 
                <SweepCombination> 
                    <Value>$TvjMax</Value> 
                    <Value>$Rgon</Value> 
                </SweepCombination> 
            </Sweeps> 
        </Diagram> 
    </Diagrams> 
</CurveFitTemplate> 

4.1.1 User Inputs and Variable Substitution 

The root of the configuration is the <UserInputs> section. This block defines 

global variables such as nominal current (Inom), bus voltage (Vcc), or junction temperature 

(Tvj) which establish the specific operating conditions of the dataset. Upon loading a 

template, the parser identifies these tags and dynamically generates an interactive UI 

table, prompting the user for numerical entry. 

Internally, the Template Controller utilizes a containers.Map data structure to 

store these key-value pairs. This map serves as a lookup table for variable substitution. 

During the parsing of subsequent nodes, the algorithm inspects every attribute string for 

the $ delimiter. If a string such as value="$Inom" is encountered, the system queries the 

map and injects the corresponding numerical value into the object property. This 

mechanism ensures that a generic template can be reused across different device ratings 

simply by updating the input table. 

4.1.2 Scaling Rules 

The <ScalingRules> block defines the data normalization logic. Each rule is 

encapsulated in a <Scale> tag containing four mandatory attributes: the target column 

name (oldName), the desired variable name (newName), a multiplicative factor (scale), 

and an additive offset (offset). This structure allows for the mapping of raw data columns 

(e.g., "t_fall [s]") to standardized internal names (e.g., "tf [ns]") required by the plotting 

engine. 

4.1.3 System Selection Logic 

The <SystemSelectionRules> section enables the automated segmentation of the 

dataset. The schema employs a nested structure where a parent <SystemCriterium> tag 

contains multiple child <Condition> tags. The logic implies an AND operation between 

conditions within a criterium. The parser reads these definitions and passes them to the 
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SystemFilterNode, where they are converted into logical vector masks that filter the data 

table. 

4.1.4 Diagram Definitions 

The visualization logic is defined in the <Diagrams> section. This part of the 

schema mirrors the hierarchical structure of the Diagram class. A <Diagram> element 

defines the axes and limits, while nested <Sweeps> and <SweepCombination> elements 

define the parameter sets required to generate specific curve families. The parser iterates 

through these nested elements to instantiate the necessary objects, automatically 

assigning the correct X and Y data sources and filtering conditions. 

Implementation of Unit Scaling 

The practical implementation of data normalization is encapsulated within the 

ScaleNode class but is controlled via the main application workflow. The core logic 

applies a linear transformation equation (𝑦 = 𝑚 ⋅ 𝑥 + 𝑐 ) to the data vectors. 

To ensure the stability of the tool in a production laboratory environment, the 

scaling algorithm was implemented with a strong focus on fault tolerance. Experimental 

datasets frequently vary; a specific column defined in a standard template might be 

missing from a specific measurement file due to channel configuration changes on the 

oscilloscope. To handle this, the scaling iteration loop is wrapped in a try-catch block. 

When the addScaledData method executes, it attempts to locate the oldName 

column in the source table. If the column is missing, the system catches the exception, 

logs a specific warning to the console, and gracefully skips that individual rule without 

interrupting the execution of the remaining scaling operations. This design decision 

ensures that the analysis pipeline remains robust, allowing engineers to visualize the 

available data even if the dataset is partially incomplete. 

Extended Curve Fitting Engine 

The mathematical core of the application resides within the Curve class. To enable 

the analysis of non-linear semiconductor characteristics without abandoning the 

numerical stability of the Tikhonov-regularized linear solver, the fitting engine was 

fundamentally refactored. The extended implementation introduces a "Transform-Solve-
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Inverse" architectural pattern, encapsulated primarily within the fitHelper and  

regularizedPolyFitWeighted methods. 

The process begins in the fitHelper method, which acts as a pre-processing 

pipeline. Before any optimization occurs, the engine evaluates the state of the LogX and 

LogY boolean properties. A critical step in this phase is data validation. Since the natural 

logarithm function is undefined for non-positive values, the method applies a logical filter 

to the raw data vectors. Data points where  𝑥 ≤ 0 𝑜𝑟 𝑦 ≤ 0  (depending on the active 

axes) are automatically excluded from the fitting set. This defensive programming 

ensures that the solver never encounters domain errors, which is particularly important 

when handling raw measurement data that may contain zero-crossings due to sensor noise 

or offset calibration issues. 

Once validated, the data is projected into the target feature space. If a logarithmic 

mode is active, the log transformation is applied to the respective vectors. The efficacy 

of this transformation is illustrated in 4. Figure. The raw measurement data, exhibiting a 

non-linear power-law decay (Left), is mapped to a linear trajectory within the logarithmic 

feature space (Right). 

 

4. Figure: Left: Raw Data (Left) vs Transformed Data (Right) 

The solver constructs the Tikhonov regularization matrix (H) and the linear 

constraint vectors within this transformed, normalized coordinate system. The 

optimization problem is solved using the quadprog function from the MATLAB 

Optimization Toolbox [20] (Interior-Point-Convex algorithm [4]) to determine the 

optimal polynomial coefficients. Finally, the resulting curve is mapped back to the 

original physical domain via the inverse transformation. For logarithmic axes, the exp() 

function is applied to the fitted vector. This architecture ensures that the resulting curve 
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strictly adheres to the physical trend such as a power law while maintaining the 

smoothness properties enforced by the regularization term. 

Hyperparameter Autotuning Algorithm 

To automate the selection of the optimal mathematical model, the autoTuneFit 

method was implemented within the Curve class. This method treats the fitting 

configuration as a discrete optimization problem where the objective is to minimize the 

Modified Akaike Information Criterion (AICc) derived in Chapter 3. Given the high 

dimensionality of the search space comprising coordinate systems, polynomial orders, 

and multiple physical constraints an exhaustive search would be computationally 

prohibitive for real-time interaction. Consequently, the implementation utilizes a 

deterministic Greedy Forward Selection strategy, executed in three sequential stages. 

5. Figure: Flowchart of the Autotuning Logic 

4.1.5 Step 1: Coordinate System Selection 

The algorithm first seeks to identify the coordinate space that best linearizes the 

data. To isolate the effect of the coordinate transformation from model complexity, the 

polynomial order is temporarily fixed to a low baseline (Order = 2). The algorithm iterates 



 31 

through the four permutation states of the LogX and LogY properties (Linear, Semi-

LogX, Semi-LogY, and Log-Log). For each permutation, the Residual Sum of Squares 

(RSS) is computed in the linear back-transformed space to ensure comparable error 

metrics. The configuration yielding the lowest initial AICc score is committed as the 

foundation for the subsequent steps. 

4.1.6 Step 2: Complexity Optimization 

With the optimal coordinate system locked, the algorithm proceeds to optimize 

the model complexity. The logic iterates through polynomial orders ranging from 0 

(constant) to 5. During this loop, the AICc score is calculated using the specific Alpha 

penalty factor (α=10) implemented in the computeAICc helper function. This high 

penalty factor imposes a strict barrier against overfitting; a higher-order polynomial is 

selected only if it provides a reduction in residual error substantial enough to outweigh 

the complexity cost. This step effectively locates the "knee point" of the error curve, 

identifying the simplest polynomial that adequately captures the data trend. 

4.1.7 Step 3: Constraint Selection (Greedy Approach) 

The final stage refines the model by applying physical constraints. The 

implementation utilizes a greedy search pattern to test constraints in a fixed hierarchy: 

first Sign, then Monotonicity, and finally Curvature. 

For each constraint type, the algorithm iteratively tests all available options (e.g., 

for Monotonicity: 'None', 'Rising', 'Falling'). A specialized scoring logic is applied here: 

Final Score = 𝐴𝐼𝐶𝑚𝑜𝑑 − (γ × 𝑁𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

The autoTuneFit method explicitly defines the Gamma reward factor (𝛾 = 10). If 

applying a constraint (e.g., forcing the curve to be monotonic) results in a score lower 

than the current best score, the constraint is accepted and committed to the configuration. 

This mathematical bias ensures that the algorithm prioritizes physically plausible models. 

For example, even if a noisy dataset suggests a slight local oscillation, the reward factor 

will drive the selection toward a monotonic curve if the increase in residual error is 

minimal. This logic effectively replicates the decision-making process of an expert 

engineer who prioritizes physical consistency over absolute fitting precision. 
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5 Evaluation 

This chapter presents the comprehensive evaluation of the developed Data-Sheet 

Analysis Tool. The primary objective of this phase was to validate the functional 

correctness of the template-driven architecture and to quantify the improvements in 

analytical accuracy and workflow efficiency compared to the legacy manual approach. 

The evaluation process was structured to isolate and verify each stage of the extended 

pipeline, from initial data parsing to the final generation of mathematically optimized 

diagrams. 

Test Environment and Methodology 

The software validation was conducted using MATLAB R2022b on standard 

laboratory workstations. To ensure the results reflected real-world engineering 

challenges, the evaluation utilized experimental datasets provided by Infineon 

Technologies. These datasets consisted of characterization measurements for discrete 

IGBT and MOSFET power devices, generated during standard double-pulse testing 

procedures. 

These specific datasets were selected because they represent the "worst-case" 

scenarios for automated analysis. They are characterized by high dynamic ranges, with 

currents spanning from milliampere-level leakage measurements to transient short-circuit 

currents exceeding hundreds of Amperes. Furthermore, the data exhibits significant 

stochastic noise, particularly in derivative-based parameters such as current slope (
𝑑𝑖

𝑑𝑡
) and 

voltage slope (
𝑑𝑣

𝑑𝑡
), which are derived from high-speed oscilloscope acquisitions. The 

validation methodology focused on three key performance indicators: the correct 

propagation of XML configuration variables, the robustness of the logarithmic fitting 

engine when applied to non-linear physical behaviors, and the ability of the Autotuning 

algorithm to converge on physically plausible models without human intervention. 

Verification of Automation Framework 

The initial phase of testing focused on the verification of the XML Templating 

System. A comprehensive test template, MOSFET_Template.xml, was developed to 

define a complete characterization session. This template included definitions for user-
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defined global variables, scaling rules for twenty distinct measurement channels, and the 

structural definitions for twelve unique diagrams. 

5.1.1 Template Loading and Variable Substitution 

The application's ability to parse and instantiate the analysis context was tested by 

loading the XML template. Upon file selection, the Template Controller successfully 

identified the <UserInputs> section and dynamically generated the interactive parameter 

table within the user interface. Values entered by the operator such as the nominal current 

(Inom), bus voltage (Vcc), and maximum junction temperature (TvjMax) were correctly 

captured by the internal map container. 

The propagation of these variables was verified by examining the downstream 

filtering logic. The SystemFilterNode correctly substituted the user-defined voltage 

thresholds (e.g., $Vgsoff) into the logical mask definitions. This allowed the software to 

automatically segregate the raw dataset, distinguishing between high-side and low-side 

switching events based on the dynamic criteria defined in the template, a task that 

previously required manual row selection in external spreadsheet software. 

5.1.2 Automated Unit Scaling 

The robustness of the data normalization engine was verified through the 

ScaleNode output. The raw measurement files contained data in base SI units (Joules for 

energy, Seconds for time). The template defined transformation rules to convert these into 

standard engineering units (milliJoules and nanoseconds). Inspection of the processed 

data table confirmed that the linear transformations were applied correctly to all target 

columns. 

Furthermore, the fault-tolerance of the scaling logic was validated by intentionally 

loading a raw dataset that was missing specific columns defined in the template. As 

designed, the try-catch mechanism within the scaling loop successfully trapped the 

missing column exception, logged a warning to the console, and proceeded to process the 

remaining valid columns without terminating the application. This confirmed that the 

architectural requirement for stability in the presence of inconsistent experimental data 

was met. 
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6. Figure: Unit Scaling Tab showing automatic conversion of units 

Evaluation of Analytical Capabilities 

A critical limitation of the previous linear solver was its inability to robustly model 

the non-linear dependencies characteristic of power semiconductor switching behaviors. 

To evaluate the effectiveness of the extended mathematical engine, a comparative 

analysis was performed using the rate of current rise (
𝑑𝑖

𝑑𝑡
) as a function of the turn-on gate 

resistance (Rgon). This relationship represents a fundamental trade-off in power 

electronics: increasing the gate resistance slows down the switching transient, reducing 

electromagnetic interference but increasing switching losses. Physically, this manifests 

as an inverse or power-law decay curve which exhibits sharp curvature at low resistance 

values and an asymptotic approach to zero at high resistance values. 

When fitted using the legacy standard polynomial approach in a linear coordinate 

system, the model frequently exhibited unphysical artifacts. To minimize the residual sum 

of squares across the high-dynamic-range axis, high-order polynomials would oscillate 

significantly, often dipping below zero in the asymptotic region to accommodate the steep 



 35 

gradient at the origin. These oscillations resulted in physically impossible negative values 

for the current slope. 

In contrast, the extended engine was tested using the Log-Log transformation 

mode (𝑥′ = ln 𝑥, 𝑦′ = ln 𝑦). As illustrated in the resulting analysis, the solver 

successfully linearized the data before optimization. The fit function generated by the 

tool, expressed as 𝑦(𝑥) = 12.7 × exp(−0.316 ln(𝑥) − 0.0811 ln(𝑥)2), confirms that 

the "Transform-Solve-Inverse" architecture functioned correctly. The resulting curve 

adhered strictly to the physical trend, passing smoothly through the measurement points 

without oscillation and maintaining a strictly positive trajectory throughout the domain. 

This test confirmed that the integration of coordinate transformations allows the 

Tikhonov-regularized solver to model complex power-law behaviors with high fidelity. 

 

7. Figure: "didt vs Rgon" curve after auto-tuning 
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Autotuning Performance and Workflow Analysis  

The Hyperparameter Autotuning algorithm was evaluated to determine its ability 

to replicate the decision-making process of an expert engineer. The evaluation utilized 

the same  
𝑑𝑖

𝑑𝑡
 dataset to verify the Greedy Forward Selection logic. 

The execution log of the algorithm revealed the sequential optimization process. 

In the first stage, the algorithm compared the Modified AICc scores across linear and 

logarithmic coordinate systems, correctly identifying that the Log-Log space provided 

the most significant reduction in linearization error. In the second stage, the algorithm 

evaluated polynomial complexity. Despite the potential for a higher-order polynomial to 

reduce the residual error marginally further, the Alpha penalty factor (α=10) imposed by 

the Modified AICc metric heavily penalized complexity. Consequently, the algorithm 

converged on a stable 2nd-order polynomial, effectively identifying the mathematical 

"knee point" where additional complexity no longer yielded statistically significant 

accuracy gains. 

In the final stage, the constraint selection logic was verified. The greedy search 

iteratively tested physical constraints. The algorithm correctly identified that applying a 

"Monotonicity: Falling" constraint and a "Curvature: Convex" constraint improved the 

overall optimization score. This improvement was driven by the Gamma reward factor 

(γ=10), which incentivized the selection of a physically descriptive model over a purely 

unconstrained mathematical fit. The final output was a smooth, monotonic, and convex 

curve that aligned perfectly with theoretical expectations for a gate resistance 

dependency. 

To quantify the efficiency gains, a workflow timing analysis was conducted. In 

the manual workflow, generating such a diagram required the user to visually inspect the 

data, hypothesize the correct axis transformation, and iteratively adjust the polynomial 

order and smoothing factors to remove oscillations. This process typically required 

several minutes of interaction per diagram. The automated workflow shifted this burden 

to computational complexity. Although the autotuning algorithm performed 

approximately 70 to 80 quadratic programming solves to explore the search space, the 

entire optimization process completed in less than two seconds on standard laboratory 

hardware. This represents a time reduction of approximately 98% for the curve-fitting 
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phase, while simultaneously ensuring that the generated models are mathematically 

consistent and reproducible across different analysis sessions. 

Below is a snippet of the MATLAB Console Output showing the Autotuning 

progress step by step: 

--- Starting Hyperparameter AutoTuning --- 
Data Pre-check: 
  - X-axis data is all positive. LogX will be tested. 
  - Y-axis data is all positive. LogY will be tested. 
 
--- Step 1: Tuning Log Scaling (using baseline PolyOrder=2) --- 
  Testing LogX=0, LogY=0: RSS=34, n=39, k=3 -> AICc Score = 55.3601 
    *** NEW BEST FOUND -> Score: 55.3601 *** 
  Testing LogX=0, LogY=1: RSS=7.78, n=39, k=3 -> AICc Score = -2.2050 
    *** NEW BEST FOUND -> Score: -2.2050 *** 
  Testing LogX=1, LogY=0: RSS=0.189, n=39, k=3 -> AICc Score = -147.1032 
    *** NEW BEST FOUND -> Score: -147.1032 *** 
  Testing LogX=1, LogY=1: RSS=0.178, n=39, k=3 -> AICc Score = -149.5366 
    *** NEW BEST FOUND -> Score: -149.5366 *** 
  ==> Best Log Config Found: LogX=1, LogY=1 
 
--- Step 2: Tuning Polynomial Order --- 
  Testing PolyOrder=0: RSS=326, n=39, k=1 -> AICc Score = 102.9456 
  Testing PolyOrder=1: RSS=4.23, n=39, k=2 -> AICc Score = -46.3134 
  Testing PolyOrder=2: RSS=0.178, n=39, k=3 -> AICc Score = -149.5366 
  Testing PolyOrder=3: RSS=0.178, n=39, k=4 -> AICc Score = -128.9455 
  Testing PolyOrder=4: RSS=0.218, n=39, k=5 -> AICc Score = -100.5093 
  Testing PolyOrder=5: RSS=0.184, n=39, k=6 -> AICc Score = -86.1928 
  ==> Best Polynomial Order Found: 2 
 
--- Step 3: Tuning Constraints (Greedy Forward Selection) --- 
  -> Evaluating constraint type: Sign 
    Testing Sign='None'   : AICc=-149.5366, Reward=0.0 -> Final Score = -
149.5366 
    Testing Sign='Positive': AICc=-115.4613, Reward=10.0 -> Final Score = -
125.4613 
    Testing Sign='Negative': AICc=152.6612, Reward=10.0 -> Final Score = 
142.6612 
    -> No improvement found. Keeping Sign = 'None'. 
  -> Evaluating constraint type: Monotonicity 
    Testing Monotonicity='None'   : AICc=-149.5366, Reward=0.0 -> Final 
Score = -149.5366 
    Testing Monotonicity='Rising' : AICc=190.3432, Reward=10.0 -> Final 
Score = 180.3432 
    Testing Monotonicity='Falling': AICc=-149.5366, Reward=10.0 -> Final 
Score = -159.5366 
    *** NEW BEST FOUND -> Committing Monotonicity = 'Falling', New Best 
Score: -159.5366 *** 
  -> Evaluating constraint type: Curvature 
    Testing Curvature='None'   : AICc=-149.5366, Reward=10.0 -> Final Score 
= -159.5366 
    Testing Curvature='Convex' : AICc=-149.5366, Reward=20.0 -> Final Score 
= -169.5366 
    Testing Curvature='Concave': AICc=143.5232, Reward=20.0 -> Final Score 
= 123.5232 
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    *** NEW BEST FOUND -> Committing Curvature = 'Convex', New Best Score: 
-169.5366 *** 
 
--- AutoTuning Complete. Applying Final Configuration --- 
Final Best Score: -169.5366 
            LogX: 1 
            LogY: 1 
       PolyOrder: 2 
            Sign: 'None' 
    Monotonicity: 'Falling' 
       Curvature: 'Convex' 

To provide a comprehensive overview of the validation results, the performance 

metrics observed during the evaluation phase are synthesized in 1. Table: Comparative 

Evaluation of Performance Metrics. This comparative analysis underscores the 

substantial advancements in workflow efficiency and analytical fidelity achieved by the 

automated framework relative to the legacy manual approach. 

Metric Legacy Manual 

Workflow 

Automated 

Framework 

Outcome 

Processing 

Latency 

Required 

approximately 3–5 

minutes per 

diagram due to 

iterative manual 

adjustment. 

Completed in less 

than two seconds 

via autonomous 

optimization 

algorithms. 

~98% reduction in 

the time required 

for curve fitting 

and diagram 

generation. 

Reproducibility Characterized by 

subjectivity; results 

were dependent on 

operator intuition 

and trial-and-error. 

Deterministic; 

governed by the 

Modified Akaike 

Information 

Criterion (AICmod). 

Elimination of 

human variability, 

ensuring consistent 

results across 

different analysis 

sessions. 

Analytical Fidelity Prone to numerical 

instability (Runge’s 

phenomenon) and 

unphysical 

negative artifacts. 

Strictly adhered to 

physical constraints 

(e.g., 

Monotonicity, 

Positivity, 

Convexity). 

Robust modeling of 

non-linear 

semiconductor 

behaviors, even 

with high-noise 

datasets. 
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Scalability Relied on 

hardcoded logic; 

required source 

code modification 

and recompilation 

for new devices. 

Driven by XML 

templates; allows 

for dynamic 

runtime 

reconfiguration. 

Decoupled 

architecture 

enabling immediate 

adaptation to novel 

device topologies 

without software 

development. 

1. Table: Comparative Evaluation of Performance Metrics 
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6 Critical Assessment 

The development of the Data-Sheet Analysis Tool represented a multifaceted 

engineering challenge that required the synthesis of software architecture, mathematical 

modeling, and user interface design. This chapter assesses the outcomes of the project 

against the initial requirements defined in Chapter 2 and discusses the specific technical 

challenges encountered during the implementation and verification phases. 

Assessment of Completed Work 

The primary objectives of this thesis to generalize the analysis workflow and to 

automate the mathematical modeling process have been successfully met. The 

transformation of the software from a rigid, code-dependent utility into a flexible, 

template-driven framework was achieved through the design and implementation of the 

XML Template Controller. By decoupling the analysis logic from the compiled source 

code, the system now satisfies the requirement for scalability; laboratory engineers can 

adapt the tool to novel device architectures and measurement protocols solely by 

modifying external configuration files, without requiring intervention from software 

developers. 

From an analytical perspective, the integration of the coordinate transformation 

engine has resolved the tool's previous inability to robustly model non-linear physical 

behaviors. The Tikhonov-regularized solver, originally limited to linear polynomial 

fitting, now operates effectively across logarithmic and semi-logarithmic domains. This 

extension ensures that critical semiconductor parameters, such as power-law switching 

energy dependencies and exponential leakage currents, are modeled with high fidelity. 

Furthermore, the development of the Hyperparameter Autotuning algorithm has 

successfully removed the subjectivity from the curve-fitting process. By utilizing the 

Modified Akaike Information Criterion, the software consistently selects models that 

balance statistical accuracy with physical plausibility, thereby ensuring reproducibility 

across different analysis sessions and reducing the manual effort required to generate 

publication-ready diagrams. 
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Challenges Encountered 

A significant challenge during the development phase was the calibration of the 

Autotuning Algorithm. While the Akaike Information Criterion is a standard statistical 

measure for model selection, the concept of "visual smoothness" required for datasheets 

is a subjective engineering preference that is difficult to quantify mathematically. Finding 

the optimal balance for the empirical Alpha (complexity penalty) and Gamma (constraint 

reward) factors required extensive testing with real-world datasets. Initial experiments 

revealed that standard AICc penalties were insufficient for high-noise oscilloscope data, 

often leading the algorithm to select high-order polynomials that modeled the noise rather 

than the signal. Conversely, an excessively high Gamma factor occasionally forced the 

selection of overly simplistic models that ignored genuine trend inflections. A robust set 

of default factors was eventually determined empirically, ensuring the algorithm behaves 

consistently across the typical dynamic ranges found in power electronics measurements. 

In addition to algorithmic tuning, the extension of the reactive architecture 

introduced complex state-management issues. The underlying reactive graph relies on 

persistent listeners to propagate data changes. Dynamically reconfiguring this graph 

destroying old diagram objects and instantiating new ones when a template is loaded 

created synchronization challenges. Early iterations of the software suffered from 

memory leaks and execution errors caused by "zombie" listeners attempting to update 

deleted figures. This was resolved by implementing a rigorous cleanup protocol within 

the base node classes, ensuring that all event listeners are explicitly detached and object 

handles are cleared before the state is reset. 

Future Development Options 

While the developed tool successfully streamlines the interactive analysis 

workflow, the evaluation identified a clear pathway for further automation through batch 

processing. Currently, the Autotuning function must be triggered manually for each curve 

or diagram to allow the user to verify the result. A logical future enhancement would be 

to integrate autotuning instructions directly into the XML schema. By introducing a 

specific attribute—for example, a flag indicating that a specific curve should be auto-

tuned upon loading—the software could iterate through the entire session immediately 

after the template is applied. This would enable the generation of a complete, 
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mathematically optimized report containing dozens of diagrams with zero additional user 

interaction, further accelerating the characterization cycle for standardized products. 
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7 Conclusion 

  The analysis of experimental measurement data constitutes a cornerstone of power 

semiconductor development. As device complexity increases to meet the demands of 

modern energy efficiency standards, the reliance on manual data processing workflows 

has emerged as a significant bottleneck, introducing latency and potential inconsistencies 

into the datasheet generation process. The necessity to characterize devices under a wide 

array of operating conditions generates vast datasets that require meticulous filtering, 

scaling, and mathematical modeling to extract meaningful physical parameters. 

This thesis presented the design and implementation of an advanced Data-Sheet 

Analysis Tool aimed at resolving these challenges through the principles of automation 

and generalization. By extending an existing MATLAB App Designer framework, the 

project introduced a robust XML-based templating system. This architectural innovation 

allows laboratory engineers to externalize the logic for data filtering, unit scaling, and 

diagram definition, effectively decoupling the analysis configuration from the application 

source code. Consequently, the software has been transformed from a rigid, device-

specific utility into a flexible platform adaptable to any semiconductor technology 

without requiring code modification. 

Furthermore, the analytical capabilities of the tool were significantly expanded to 

address the specific physical behaviors of power devices. The implementation of a 

Tikhonov-regularized solver capable of coordinate transformations ensures that non-

linear characteristics—such as exponential leakage currents and power-law switching 

energy dependencies—are modeled with high fidelity and numerical stability. The 

introduction of the Hyperparameter Autotuning algorithm, driven by a modified Akaike 

Information Criterion with specific penalties for complexity and rewards for physical 

constraints, guarantees that the generated curves are not only mathematically optimal but 

also adhere to the physical laws of the system. 

In conclusion, the developed tool successfully transforms a fragmented, manual 

workflow into a streamlined, reproducible, and highly efficient process. It empowers 

laboratory engineers at Infineon Technologies to focus on the interpretation of device 

physics rather than the mechanics of data manipulation, thereby significantly accelerating 
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the characterization and development cycle of next-generation power electronic 

components. 
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Annex 

I. Declaration on the Use of Generative Artificial Intelligence 

 I have not used any generative AI tools. 

 I have used generative AI tools. I have verified the content generated by AI, ensured 

the accuracy of the outputs, and properly indicated each instance of use in the table 

below. 

Usage type 

Name of Generative AI 

Tool(s) 

Affected Sections 

(chapter, page number, 

reference) 

Estimated Proportion of 

Use (per usage type) 

Literature Review 
Chatgpt 4 Chapters 1 to 7 

40% of the text was 

checked/improved 

Brief Summary  

of the Prompt 

Language proofreading and style improvement. 

Program Code 

Generation 
   

Brief Summary  

of the Prompt 

 

Generating New Ideas or 

Solution Proposals 
   

Brief Summary  

of the Prompt 

 

Creating an Outline (text 

structure, bullet points) 
   

Brief Summary  

of the Prompt 

 

Creating Text Blocks 
   

Brief Summary  

of the Prompt 

 

Generating Images for 

Illustrative Purposes 

   

Brief Summary  

of the Prompt 
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Data Visualization, 

Generating Charts Based 

on Data Points 

   

Brief Summary  

of the Prompt 

 

Preparing a Presentation 
   

Brief Summary  

of the Prompt 

 

Other (please specify) 
   

Brief Summary  

of the Prompt 

Proofreading and finding errors 

Aggregated Percentage Value (for the core part of the task) 0% 

Brief Textual Justification of the Aggregated Value: 

I performed the professional content, research, measurements, and software development independently. I used 

generative AI exclusively to check the grammar of the English text written by myself and to improve the scientific 

style and vocabulary. The AI did not add any new professional ideas or results to the thesis. 

 

II . Attachements 

The following digital artifacts are attached to this thesis to demonstrate the 

functionality of the developed tool. all the attachments can be found in the Digital 

repository linked at 4: 

1. DataSheetAnalysisTool.exe: The standalone compiled executable of the 

developed software. This application runs the full analysis pipeline 

demonstrated in the evaluation chapter. 

2. MOSFET_Template.xml: The XML configuration file used for the 

primary evaluation cases (Switching energy, Di/Dt). 

3. IGBT_Template.xml: An additional configuration template demonstrating 

the adaptability of the system to different device technologies. 
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4. Digital Repositoryi: Snippets of code, Functions and methods developed 

for this thesis. https://github.com/abdel-ahbane/DataSheet-Analysis-

Automation-Tool 

 

i The complete source code for the application is proprietary to Infineon Technologies and is not 

included in the public repository. The core algorithms developed specifically for this thesis (Autotuning 

and Logarithmic Logic) are documented in the annexed Digital repository. 

                                                 

https://github.com/abdel-ahbane/DataSheet-Analysis-Automation-Tool
https://github.com/abdel-ahbane/DataSheet-Analysis-Automation-Tool

