

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

 Department of Telecommunications and Artificial Intelligence

Abdelhamid Ahbane

DEVELOPMENT OF A DATA-

SHEET ANALYSIS TOOL WITH

FOCUS ON DIAGRAM

AUTOMATION

SUPERVISOR

Dr. Al-Radhi Mohammed Salah,

Dr. Fischer Andreas

BUDAPEST, 2025

Contents
Table of Figures .. 7

Summary .. 8

Résumé ... 9

1 Introduction .. 11

Background and Motivation ... 11

Problem Statement .. 12

Objectives ... 12

Thesis Organization .. 13

2 Problem Analysis and Requirements ... 14

State of the Art .. 14

Workflow Challenges ... 15

Requirements Specification .. 16

3 Theoretical Preliminaries .. 18

Regularized Least Squares (Tikhonov Regularization) .. 18

Coordinate Transformations and Logarithmic Linearization 19

Model Selection Criteria ... 21

4 Design and Implementation .. 23

Overview of the Extended Architecture ... 23

The XML Template Framework ... 24

4.1.1 User Inputs and Variable Substitution ... 27

4.1.2 Scaling Rules ... 27

4.1.3 System Selection Logic ... 27

4.1.4 Diagram Definitions .. 28

Implementation of Unit Scaling .. 28

Extended Curve Fitting Engine ... 28

Hyperparameter Autotuning Algorithm .. 30

4.1.5 Step 1: Coordinate System Selection ... 30

4.1.6 Step 2: Complexity Optimization .. 31

4.1.7 Step 3: Constraint Selection (Greedy Approach) .. 31

5 Evaluation ... 32

Test Environment and Methodology .. 32

Verification of Automation Framework ... 32

5.1.1 Template Loading and Variable Substitution .. 33

5.1.2 Automated Unit Scaling... 33

Evaluation of Analytical Capabilities ... 34

Autotuning Performance and Workflow Analysis .. 36

6 Critical Assessment .. 40

Assessment of Completed Work ... 40

Challenges Encountered ... 41

Future Development Options .. 41

7 Conclusion .. 43

References .. 45

Annex ... 47

I. Declaration on the Use of Generative Artificial Intelligence 47

II . Attachements ... 48

STUDENT DECLARATION

I, Abdelhamid Ahbane, the undersigned, hereby declare that the present BSc thesis work

has been prepared by myself and without any unauthorized help or assistance. Only the

specified sources (references, tools, etc.) were used. All parts taken from other sources

word by word, or after rephrasing but with identical meaning, were unambiguously

identified with explicit reference to the sources utilized.

I authorize the Faculty of Electrical Engineering and Informatics of the Budapest

University of Technology and Economics to publish the principal data of the thesis work

(author's name, title, abstracts in English and in a second language, year of preparation,

supervisor's name, etc.) in a searchable, public, electronic and online database and to

publish the full text of the thesis work on the internal network of the university (this may

include access by authenticated outside users). I declare that the submitted hardcopy of

the thesis work and its electronic version are identical.

Full text of thesis works classified upon the decision of the Dean will be published after

a period of three years.

Budapest, 12 December 2025

 Abdelhamid Ahbane

Table of Figures

1. Figure: Legacy Template Selection Interface. .. 15

2. Figure: Simplified UML Class Structure diagram .. 24

3. Figure: XML hierarchy tree .. 25

4. Figure: Left: Raw Data (Left) vs Transformed Data (Right) 29

5. Figure: Flowchart of the Autotuning Logic .. 30

6. Figure: Unit Scaling Tab showing automatic conversion of units 34

7. Figure: "didt vs Rgon" curve after auto-tuning... 35

 8

Summary

A time reduction of approximately 98% in the curve-fitting phase is achieved by

the automated framework developed in this thesis. This significant efficiency gain is

utilized to streamline the characterization of power semiconductor devices, such as

Insulated Gate Bipolar Transistors (IGBTs) and Metal-Oxide-Semiconductor Field-

Effect Transistors (MOSFETs), thereby transforming a historically labor-intensive

process into a reproducible and rapid workflow. The characterization of these power

semiconductor devices, constitutes a critical phase in the development of modern power

electronics. To ensure reliability and efficiency, Development Lab Engineers at Infineon

Technologies generate vast quantities of experimental measurement data that must be

synthesized into accurate Data-Sheets. However, the transition from raw measurement

files to finalized, mathematically consistent diagrams is historically a fragmented,

manual, and time-consuming process, prone to variability and human error.

The objective of this thesis is to streamline this workflow by transforming an

existing MATLAB-based analysis tool into a generalized, template-driven framework.

The primary engineering contribution of this work is the design and implementation of a

flexible XML-based configuration system. This architecture allows engineers to

externalize the logic for data filtering, unit scaling, and diagram definition, thereby

ensuring reproducibility across different device types without requiring modification to

the source code.

Furthermore, the analytical capabilities of the software were significantly

enhanced to support the autonomous modeling of non-linear semiconductor physics. A

Tikhonov-regularized solver was implemented with a coordinate transformation engine,

enabling the robust fitting of exponential and power-law behaviors. To eliminate the

subjectivity of manual parameter tuning, a Hyperparameter Autotuning algorithm was

developed. This feature utilizes a Modified Akaike Information Criterion (AICc)—

incorporating specific penalties for model complexity and rewards for physical

constraints—to automatically select the optimal mathematical model. The developed tool

successfully reduces manual intervention and significantly accelerates the Data-Sheet

generation process while guaranteeing high standards of analytical consistency.

 9

 Résumé

Une réduction du temps d'environ 98 % lors de la phase d'ajustement de courbe

est obtenue grâce au cadre automatisé développé dans cette thèse. Ce gain d'efficacité

significatif est mis à profit pour rationaliser la caractérisation des dispositifs semi-

conducteurs de puissance, tels que les transistors bipolaires à grille isolée (IGBT) et les

transistors à effet de champ à structure métal-oxyde-semi-conducteur (MOSFET),

transformant ainsi un processus historiquement laborieux en un flux de travail rapide et

reproductible. La caractérisation de ces dispositifs constitue une étape cruciale dans le

développement de l'électronique de puissance moderne. Afin de garantir fiabilité et

efficacité, les ingénieurs des laboratoires de développement chez Infineon Technologies

génèrent de vastes quantités de données de mesure expérimentales qui doivent être

synthétisées en fiches techniques précises. Cependant, la transition des fichiers de

mesures brutes vers des diagrammes finalisés et mathématiquement cohérents est

historiquement un processus fragmenté, manuel et chronophage, sujet à la variabilité et

aux erreurs humaines.

L'objectif de cette thèse est de rationaliser ce flux de travail en transformant un

outil d'analyse existant sous MATLAB en un cadre généralisé piloté par des modèles. La

principale contribution technique de ce travail réside dans la conception et la mise en

œuvre d'un système de configuration flexible basé sur XML. Cette architecture permet

aux ingénieurs d'externaliser la logique de filtrage des données, de mise à l'échelle des

unités et de définition des diagrammes, assurant ainsi une reproductibilité entre différents

types de dispositifs sans nécessiter de modification du code source.

De plus, les capacités analytiques du logiciel ont été considérablement améliorées

pour permettre la modélisation autonome de la physique non linéaire des semi-

conducteurs. Un solveur régularisé de Tikhonov a été implémenté conjointement avec un

moteur de transformation de coordonnées, permettant l'ajustement robuste des

comportements exponentiels et des lois de puissance. Afin d'éliminer la subjectivité du

réglage manuel des paramètres, un algorithme de réglage automatique des

hyperparamètres a été développé. Cette fonctionnalité exploite un Critère d'Information

d'Akaike corrigé (AICc) modifié intégrant des pénalités spécifiques pour la complexité

du modèle et des récompenses pour le respect des contraintes physiques, pour sélectionner

 10

automatiquement le modèle mathématique optimal. L'outil développé réduit avec succès

les interventions manuelles et accélère significativement le processus de génération des

fiches techniques, tout en garantissant des normes élevées de cohérence analytique.

 11

1 Introduction

Background and Motivation

The continuous evolution of power electronics is a driving force behind the global

transition towards higher energy efficiency. Modern applications, ranging from electric

vehicle traction inverters to renewable energy grid integration, place increasingly

stringent demands on power semiconductor devices. Consequently, the characterization

and verification of components such as Insulated Gate Bipolar Transistors (IGBTs) and

Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) have become critical

phases in the product development lifecycle [1][8]. Companies like Infineon

Technologies operate at the forefront of this field, ensuring that every component meets

rigorous performance and reliability standards before reaching the market.

A central output of this characterization process is the device Data-Sheet. This

comprehensive document serves as the primary reference for system designers, providing

essential thermal, electrical, and switching characteristics derived from extensive

experimental measurements, often standardized by international electrotechnical

guidelines [9]. Development laboratory engineers generate vast quantities of raw data by

testing devices under a wide spectrum of operating conditions, including varying

temperatures, gate voltages, and load currents, as defined in standard switching loss

protocols [10]. The accuracy and clarity of the diagrams presented in these Data-Sheets

are paramount, as they directly influence the design decisions made by engineers

worldwide [22].

However, the transition from raw experimental measurement data to publication-

ready diagrams is a complex and historically labor-intensive process. Raw measurement

files, typically generated by high-speed oscilloscopes and data loggers, often contain

significant noise and are recorded in base SI units that differ from the engineering units

required for documentation. Furthermore, the data often represents a mix of distinct

system states, such as high-side versus low-side switching events in a half-bridge

configuration that must be meticulously separated before analysis. When performed

manually, the tasks of filtering, scaling, and curve fitting are not only time-consuming

but also prone to human error, potentially introducing inconsistencies into the final

documentation.

 12

Problem Statement

While software tools exist to assist with data visualization, the standard workflows

often lack the flexibility required to keep pace with the rapidly expanding variety of

device architectures. The legacy analysis framework utilized within the laboratory

provided a stable architectural foundation but relied on static, hardcoded configurations

optimized for specific device types. As the scope of characterization expanded to include

novel MOSFET topologies and increasingly complex measurement protocols, the rigidity

of this approach became a bottleneck. Engineers were frequently required to request

software modifications for routine configuration changes, creating a dependency that

slowed the analysis cycle.

A significant challenge within this workflow is the mathematical modeling of

device characteristics. Experimental data is inherently noisy, and fitting smooth curves to

this data is essential for extracting meaningful parameters. In a manual workflow, finding

the optimal mathematical model involves a trial-and-error process where the engineer

must iteratively adjust polynomial orders and smoothing factors. This approach relies

heavily on user intuition, leading to a lack of reproducibility; different engineers might

produce slightly different curves for the same dataset.

Furthermore, standard polynomial fitting methods are frequently insufficient for

the robust modeling of non-linear physical behaviors, such as exponential leakage

currents or power-law switching energy distributions. Consequently, significant manual

intervention is required to constrain the generated curves into physically plausible

trajectories. From a numerical perspective, the approximation of these complex behaviors

using high-order polynomials on noisy data is recognized as an ill-posed problem [2][7].

This formulation often results in numerical instability and overfitting, thereby limiting

the reliability of the analysis.

Objectives

The primary objective of this thesis is to design and implement a comprehensive

extension to the existing Data-Sheet Analysis Tool, transforming it into a generalized,

automated framework. The work aims to eliminate the bottlenecks associated with

manual data processing by introducing a flexible, template-driven architecture. This

system allows laboratory engineers to define complex analysis logic—including data

 13

filtering, unit scaling, and diagram definition—via external configuration files, thereby

decoupling the analysis parameters from the compiled source code.

Technically, the project seeks to enhance the analytical capabilities of the software

by integrating advanced mathematical processing engines. A key goal is the

implementation of a robust solver capable of handling logarithmic coordinate

transformations, ensuring that non-linear semiconductor physics can be modeled

accurately. Furthermore, the thesis aims to develop an intelligent Hyperparameter

Autotuning algorithm. By utilizing a modified statistical selection criterion, this algorithm

is designed to automatically identify the optimal curve-fitting configuration that balances

mathematical accuracy with adherence to physical constraints, such as monotonicity and

positivity. The ultimate goal is to provide a tool that significantly accelerates the Data-

Sheet generation process while guaranteeing high standards of consistency and

reproducibility.

Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a detailed

analysis of the task, examining the state of the art of the existing software architecture

and specifying the functional requirements for the extended framework. Chapter 3

outlines the theoretical preliminaries, deriving the mathematical formulations for

Tikhonov regularization, the coordinate transformations used for logarithmic fitting, and

the statistical criteria for model selection. Chapter 4 details the design and implementation

of the engineering solution, describing the development of the XML template parser, the

extended mathematical engine, and the autotuning algorithm. Chapter 5 presents the

evaluation of the tool, verifying the automation framework and quantifying the

improvements in analytical accuracy and workflow efficiency through test cases using

real-world MOSFET data. Chapter 6 offers a critical assessment of the completed work,

discussing the challenges encountered and potential areas for future development. Finally,

Chapter 7 summarizes the contributions of the thesis.

 14

2 Problem Analysis and Requirements

State of the Art

The software framework initially utilized by the development laboratory was built

upon the MATLAB App Designer platform [19], providing a graphical environment for

the post-processing of semiconductor measurement data. The architectural backbone of

this application was a reactive node system, a design pattern that manages data

dependencies through a directed acyclic graph. In this architecture, data flows from

source nodes (file loaders) to calculation nodes (scalers, filters) and finally to presentation

nodes (tables, diagrams). A key strength of this existing architecture was its

implementation of lazy evaluation [17]; mathematical operations were executed only

when the final output was explicitly requested by the user, ensuring that the application

remained responsive even when varying large datasets.

In terms of user experience, the legacy interface was designed around a linear,

procedural workflow, adhering to standard interaction design patterns [21]. The user was

required to navigate sequentially through a series of tabs, progressing from left to right.

The process began with data loading, followed by a manual configuration step where

specific measurement parameters were entered into a fixed form. 1. Figure illustrates this

legacy "Template Selection" interface. The design relied on a pre-defined set of input

fields specifically tailored to established technologies, such as standard IGBT modules.

Users would select the device technology from a dropdown menu, which would populate

the interface with a static set of variables required for that specific device type.

 15

1. Figure: Legacy Template Selection Interface.

Workflow Challenges

Despite the robustness of the underlying reactive architecture, the operational

workflow exhibited significant scalability challenges as the scope of device

characterization expanded. The primary limitation was the rigid coupling between the

measurement definition and the application source code. As demonstrated in 1.Figure, the

template logic—defining which variables were required and how they should be

processed—was hardcoded within the application. This meant that the tool offered no

intrinsic flexibility for the end-user to customize the analysis structure. If a new

measurement protocol was introduced, or if a novel device architecture (such as a

MOSFET with complex body-diode behavior) required additional parameters not present

in the standard IGBT form, the software source code had to be manually modified and

recompiled. This dependency created a bottleneck, preventing laboratory engineers from

autonomously adapting the tool to evolving test requirements.

Furthermore, the data conditioning phase represented a substantial manual

overhead. In the legacy workflow, the segmentation of raw data—distinguishing between

 16

different system states or operating modes—required interactive user intervention.

Engineers had to manually configure filtering parameters for each session, a process that

was not only time-consuming but also susceptible to human error. Similarly, the

mathematical analysis of the curves was a "human-in-the-loop" process. The user was

required to inspect each curve visually and manually adjust fitting parameters to achieve

a satisfactory representation. This trial-and-error approach introduced latency and

potential inconsistency, as the criteria for a "good fit" were subjective and dependent on

the individual engineer’s judgment.

Requirements Specification

To address these limitations and transform the specialized tool into a generalized

analysis framework, a comprehensive set of functional requirements was defined. The

overarching objective was to decouple the analysis logic from the application logic,

thereby enabling a fully data-driven workflow.

The primary requirement was the design and implementation of a flexible, XML-

based templating system. The application was required to parse external configuration

files that define the complete analysis context. This includes the definition of user inputs,

the rules for unit scaling and data normalization, and the logic for system state filtering.

By externalizing these definitions, the tool would allow engineers to create and modify

analysis templates without altering the codebase. The workflow was to be streamlined

such that a user could simply load a raw data file and an XML template, after which the

system would automatically propagate the configuration to all downstream processes,

populating tables and diagrams instantaneously.

Mathematically, the system required significant enhancement to support the

autonomous modeling of non-linear semiconductor physics. The linear solver needed to

be extended to support logarithmic coordinate transformations, enabling the robust fitting

of exponential and power-law behaviors that are characteristic of modern power devices.

Furthermore, to eliminate the subjectivity of manual fitting, the software required an

intelligent Hyperparameter Autotuning algorithm. This algorithm was required to

automatically explore the search space of possible mathematical models—varying

polynomial orders, coordinate systems, and physical constraints—and select the optimal

configuration based on a statistically rigorous criterion. The combination of these features

 17

aimed to produce a "one-click" analysis experience, where the software delivers

publication-ready diagrams immediately upon template application.

 18

3 Theoretical Preliminaries

This chapter outlines the mathematical foundations that underpin the analytical

capabilities of the developed software framework. To ensure the accurate extraction of

physical parameters from noisy experimental data, the system relies on advanced

regularization techniques, domain-specific coordinate transformations, and statistical

model selection criteria. The following sections derive the mathematical formulations

used to ensure both numerical stability and physical plausibility in the curve-fitting

process.

Regularized Least Squares (Tikhonov Regularization)

The core analytical task involves approximating a smooth scalar function 𝑓(𝑥)

given a set of discrete, noisy measurement pairs (𝑥𝑖, 𝑦𝑖) where 𝑖 = 1,2, . . . , 𝑁. In the

context of semiconductor characterization, the data often contains stochastic noise

derived from high-speed switching events. A standard Ordinary Least Squares (OLS)

approach seeks to minimize the sum of squared residuals between the model and the

observations. However, when high-order polynomials are used to approximate complex

behaviors, the OLS formulation becomes an ill-posed problem [2]. This frequently leads

to overfitting, where the fitted curve exhibits high-frequency oscillations—known as

Runge’s phenomenon—at the boundaries of the domain to minimize the residual error of

specific noise points.

To mitigate this instability, the mathematical engine employs Tikhonov

Regularization. Instead of minimizing the residual error in isolation, the algorithm

minimizes a composite cost function 𝐽 that includes a regularization term penalizing the

complexity or "roughness" of the solution. The continuous form of the objective function

is defined as:

𝐽(𝑝) = 𝛴𝑖=1
𝑁 𝑤𝑖(𝑦𝑖 − 𝑓(𝑥𝑖))

2
+ 𝜆 ∫ (

𝑑𝑚𝑓

𝑑𝑥𝑚
)

2

𝑑𝑥

In this formulation, 𝑤𝑖 represents the weight assigned to each data point, allowing

for the prioritization of specific measurement ranges. The second term represents the

regularization penalty, where 𝜆 ≥ 0 is the Tikhonov factor (smoothing parameter). The

integral measures the energy of the 𝑚 − 𝑡ℎ derivative of the function. For this application,

 19

the second derivative (𝑚 = 2) is utilized to penalize curvature, thereby favoring smoother

trajectories that are physically characteristic of thermal and electrical semiconductor

responses.

To solve this numerically, the problem is discretized. The function 𝑓(𝑥) is

approximated by a polynomial of degree 𝑘, which can be expressed as a linear

combination of basis functions (powers of 𝑥). The optimization problem is then

formulated in matrix notation. Let 𝑦 be the vector of observed values and 𝑉 be the

Vandermonde matrix [12] where 𝑉𝑖𝑗 = 𝑥𝑖
𝑗
. The coefficients 𝑐 of the polynomial are

determined by minimizing the discrete form of the cost function, a variation of the

standard linear least squares problem [13]:

𝐽(𝑐) = || 𝑊1/2 (𝑦 − 𝑉𝑐) ||2
2 + 𝜆 || 𝐿𝑐 ||2

2

Here, 𝑊 is the diagonal weight matrix, and 𝐿 is the Tikhonov matrix, which

represents the discrete difference operator corresponding to the second derivative. The

minimization of this quadratic form, subject to linear inequality constraints (such as

positivity or monotonicity), constitutes a Quadratic Programming (QP) problem. The

solver identifies the optimal coefficient vector 𝑐 that satisfies the physical constraints

while minimizing the weighted sum of the residual error and the curvature penalty.

Coordinate Transformations and Logarithmic Linearization

While Tikhonov regularization ensures numerical stability for polynomial fitting,

the fundamental physical characteristics of semiconductor devices often adhere to non-

linear laws that are not optimally approximated by polynomials in a Cartesian coordinate

system. For instance, switching energy losses (𝐸𝑟𝑒𝑐) frequently scale with gate resistance

according to a power law, whereas leakage currents typically exhibit an exponential

dependence on temperature or voltage. To extend the applicability of the linear Tikhonov

solver to these non-linear domains, a Coordinate Transformation Engine was

implemented. This methodology relies on the principle of linearization, wherein the

original data space 𝐷 is mapped to a feature space 𝐹 via a bijective transformation

𝛷(𝑥, 𝑦) → (𝑢, 𝑣). The polynomial fitting is subsequently executed within this feature

space, and the result is mapped back to the original domain via the inverse transformation

Φ−1.

 20

To address power-law relationships of the form 𝑦 = 𝐴𝑥𝑘. the Log-Log

transformation is utilized. Linearization is achieved by taking the natural logarithm of

both sides, yielding the equation:

𝑙𝑛(𝑦) = 𝑙𝑛(𝐴) + 𝑘 ⋅ 𝑙𝑛(𝑥)

The transformation is defined as 𝑢 = 𝑙𝑛(𝑥) and 𝑣 = 𝑙𝑛(𝑦). In this space, a first-

order polynomial 𝑃(𝑢) = 𝑐1𝑢 + 𝑐0 corresponds directly to the physical parameters,

where the slope 𝑐1 represents the exponent 𝑘, and the intercept 𝑐0 corresponds to 𝑙𝑛(𝐴).

This transformation allows the linear solver to determine the exponent of the power law

deterministically without requiring iterative non-linear optimization methods.

Analogously, exponential relationships of the form 𝑦 = 𝐴𝑒𝐵𝑥 are modeled via the

Semi-Log Y transformation. The linearization is achieved by taking the logarithm of the

dependent variable:

𝑙𝑛(𝑦) = 𝑙𝑛(𝐴) + 𝐵 ⋅ 𝑥

The mapping is defined as 𝑢 = 𝑥 and 𝑣 = 𝑙𝑛(𝑦). A linear fit 𝑣 = 𝑐1𝑢 + 𝑐0 in this

space maps back to the exponential function, where the coefficient 𝐵 = 𝑐1 and the scaling

factor 𝐴 = 𝑒𝑐0. This mode is particularly effective for modeling leakage currents or diode

forward characteristics in the sub-threshold region. Furthermore, for processes that evolve

over several orders of magnitude in the independent variable, the Semi-Log X

transformation is employed. The relationship 𝑦 = 𝐴 + 𝐵 ⋅ 𝑙𝑛(𝑥) is linearized by the

mapping 𝑢 = 𝑙𝑛(𝑥) and 𝑣 = 𝑦.

It is imperative to note that the mathematical derivations provided above illustrate

the fundamental first-order cases (𝑃(𝑢) = 𝑐1𝑢 + 𝑐0). However, the mathematical engine

is not restricted to these linear approximations within the feature space. When the

polynomial order is increased, the complexity of the back-transformed function increases

significantly. For example, a second-order fit performed within the Log-Log domain

corresponds to a function of the form 𝑦 = 𝐴 ∙ 𝑥(𝐵+𝐶 ln 𝑥). This capability allows the

system to capture subtle variations and second-order effects in the physical data while

retaining the stability benefits of the Tikhonov solver. By pre-processing the

measurement vectors x and y into the vectors u and v before constructing the

Vandermonde matrices, the stable Regularized Least Squares engine described in Section

0 is effectively reused to solve for non-linear physical parameters.

 21

Model Selection Criteria

Automating the curve-fitting process requires a quantitative metric to compare the

validity of different mathematical models, such as determining whether a 2nd-order or

5th-order polynomial provides a superior representation of the data. The standard

statistical metric for such selection is the Akaike Information Criterion (AIC) [11], which

estimates the relative information loss of a given model [5]. For datasets with finite

sample sizes 𝑁, the Corrected AIC (AICc) is preferred to prevent the selection of over-

parameterized models, a correction originally proposed to address bias in small-sample

statistics [3][14]. The standard formulation for AICc in the context of least squares is:

𝐴𝐼𝐶𝑐 = 𝑁 ln (
𝑅𝑆𝑆

𝑁
) + 2𝑘 +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1

Where 𝑅𝑆𝑆 is the Residual Sum of Squares, and k is the number of estimated

parameters (polynomial order + 1). However, in the context of datasheet generation,

properties such as "visual smoothness" and adherence to physical laws are often more

critical than minimizing the absolute residual error of noisy data. It was observed that the

standard AICc tends to be too permissible regarding model complexity, frequently

selecting higher-order polynomials that capture measurement noise rather than the

underlying physical trend.

To address this limitation, a Modified 𝐴𝐼𝐶𝑚𝑜𝑑 metric was derived for this

framework, introducing two empirical hyperparameters: an Alpha factor (𝛼) and a

Gamma factor (𝛾). The Alpha factor serves as an enhanced complexity penalty. By

scaling the standard penalty term 2𝑘 by 𝛼. a significantly heavier cost is imposed on

increasing the polynomial order. The modified 𝐴𝐼𝐶𝑚𝑜𝑑 is formulated as.

𝐴𝐼𝐶𝑚𝑜𝑑 = 𝑁 ln (
𝑅𝑆𝑆

𝑁
) + 2𝑘α +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1

For this application, 𝛼 is set to 10 based on empirical tuning. This high penalty

ensures that the algorithm rejects higher-order models unless they provide a statistically

overwhelming improvement in the RSS, thereby biasing the selection towards simpler,

more robust functions.

To further prioritize physical plausibility, a reward term is introduced via the

Gamma factor. If a model configuration successfully converges while satisfying a

 22

physical constraint such as Monotonicity or Positivity, the optimization score is reduced

by the Gamma factor (𝛾).

𝑅𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝛾 ⋅ 𝑁𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 For this implementation, 𝛾 is set to 10. This value was selected to sufficiently

incentivize the selection of physically constrained models without overriding the

fundamental data trend if the error becomes too large. Consequently, the final

optimization score utilized by the Autotuning algorithm combines the modified

complexity penalty and the constraint reward:

Final Score = 𝐴𝐼𝐶𝑚𝑜𝑑 − (γ × 𝑁𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

This modified criterion mathematically formalizes the engineering preference for

simple, monotonic, and physically consistent models. By balancing error reduction with

strict complexity penalties and constraint rewards, the software is enabled to

autonomously make decisions that align with expert human judgment.

 23

4 Design and Implementation

This chapter details the software engineering methodologies applied to transform

the legacy analysis tool into a flexible, template-driven framework. The implementation

follows a strict Object-Oriented Programming (OOP) paradigm [15] within the MATLAB

App Designer environment, adhering to principles of clean code architecture [16]. The

design strategy focused on decoupling the measurement configuration logic from the

compiled application code, achieved through the development of a custom XML parsing

engine and the extension of the underlying reactive data flow architecture.

Overview of the Extended Architecture

The software is built on a Model-View-Controller (MVC) architecture pattern [6].

The View is represented by the App Designer graphical interface, while the Model is

encapsulated within a Reactive Node System. It is important to note that the base

CalcNode class and the fundamental concept of the reactive graph were established in a

previous iteration of the software. The primary architectural contribution of this thesis is

the design of the Template Controller and the specific implementations of the data

processing nodes (ScaleNode, SystemFilterNode) that utilize this infrastructure to support

dynamic reconfiguration.

The reactive architecture operates on a Directed Acyclic Graph (DAG) principle,

utilizing a "Pull" mechanism or Lazy Evaluation. In this system, a node does not

automatically push data to its dependents when a change occurs. Instead, it marks itself

and its dependents as "dirty." Calculation only occurs when a terminal node (such as a

Diagram or Table) explicitly requests data. This design is critical for performance, as it

prevents the unnecessary execution of computationally expensive fitting algorithms

during intermediate configuration steps.

The extended data flow hierarchy implemented in this work is structured as

follows:

FileNode (Source): This node acts as the entry point, wrapping standard

MATLAB file I/O operations. It is responsible for loading heterogeneous raw data

formats (.txt, .csv, .xlsx) and merging them into a unified MATLAB table object.

 24

ScaleNode (Intermediate): A dependent node that consumes the raw table from

FileNode. It applies linear transformations to convert base units into engineering units

based on injected scaling rules.

SystemFilterNode (Intermediate): A dependent node that consumes the scaled

table. It implements a subtractive filtering logic to categorize data rows (e.g., "High-Side"

vs. "Low-Side") based on boolean masks.

Diagram and Curve (Terminal): These objects represent the final analytical

output. They request processed data from the SystemFilterNode and perform the

mathematical curve fitting.

The Template Controller, implemented within the main application class

(CurveFitting.mlapp), acts as the orchestrator. Upon loading an XML template, this

controller parses the definition and programmatically instantiates and links these nodes,

effectively rewriting the analysis logic at runtime without requiring a software recompile.

2. Figure: Simplified UML Class Structure diagram

The XML Template Framework

To satisfy the primary requirement of generalization, a robust configuration

system was necessary to decouple the analysis logic from the compiled application code.

The Extensible Markup Language (XML) [18] was selected as the unified configuration

 25

standard for this framework. This design choice was driven by several key technical and

operational advantages suited to the MATLAB environment and the end-user profile.

Firstly, the strict hierarchical nature of XML naturally mirrors the nested object-

oriented architecture of the application (e.g., a Diagram contains Sweeps, which contain

Conditions). This allows the configuration file to be deserialized directly into the runtime

object graph without complex intermediate mapping. Secondly, the verbose, tag-based

syntax of XML offers superior human-readability compared to formats such as JSON or

binary configurations. This is critical for laboratory engineers who must create and

modify templates manually without a specialized editor. Finally, MATLAB provides

native support for the W3C Document Object Model (DOM) via the xmlread function,

enabling efficient, standard-compliant parsing without the need for third-party libraries.

The application utilizes a custom DOM parser to traverse this structure. The

parsing logic is divided into functional blocks that process the definition sequentially,

ensuring that dependencies—such as variable definitions—are resolved before they are

utilized by downstream components.

The logical hierarchy of these elements, illustrating the relationship between

inputs, rules, and visualization objects, is depicted in 3. Figure: XML hierarchy tree.

3. Figure: XML hierarchy tree

 26

To demonstrate the practical application of this schema, a minimal configuration

template designed to generate a single "Switching Energy vs. Current" diagram is

presented below:

<?xml version="1.0" encoding="UTF-8"?>
<CurveFitTemplate>
 <!-- 1. General Meta-Data -->
 <Info>
 <Name>Minimal MOSFET Template</Name>
 <Version>1.0</Version>
 <Description>Example Minimal configuration for Thesis
Documentation</Description>
 </Info>

 <!-- 2. User Inputs: Variables defining the operating point -->
 <UserInputs>
 <Input name="Inom" column="Ic [A]" />
 <Input name="Imax" column="Ic [A]" />
 <Input name="Vcc" column="Vcc [V]"/>
 <Input name="TvjMax" column="T [°C]"/>
 <Input name="Rgon" column="G1_Rgon [Ohm]"/>
 </UserInputs>

 <!-- 3. Scaling Rules: Normalization logic (e.g., Joules to mJ) -->
 <ScalingRules>
 <Scale newName="Eon [mJ]" oldName="Eon links [J]" scale="1000"
offset="0" />
 </ScalingRules>

 <!-- 4. System Selection: Logic to filter specific measurement rows -->
 <SystemSelectionRules>
 <SystemCriterium ChipName="MOSFET" Criterium="Eon [mJ]">
 <Condition key="T [°C]" value="$TvjMax" />
 <Condition key="Ic [A]" value="$Inom" />
 <Condition key="Vcc [V]" value="$Vcc" />
 <Condition key="valid" value="1" />
 </SystemCriterium>
 </SystemSelectionRules>

 <!-- 5. Diagram Definition: Visualization logic -->
 <Diagrams>
 <Diagram figureNr="1">
 <XAxis>Ic [A]</XAxis>
 <YAxis>Eon [mJ]</YAxis>
 <XLimits min="0" max="$Imax" />

 <!-- Global filters for this diagram -->
 <Conditions>
 <Condition key="Vcc [V]" value="$Vcc" />
 <Condition key="valid" value="1" />
 </Conditions>

 <!-- Curve families to generate -->
 <Sweeps>
 <SweepParameter>T [°C]</SweepParameter>
 <SweepParameter>Rgon [Ohm]</SweepParameter>

 27

 <!-- Curve 1: Nominal Gate Resistor at Max Temp -->
 <SweepCombination>
 <Value>$TvjMax</Value>
 <Value>$Rgon</Value>
 </SweepCombination>
 </Sweeps>
 </Diagram>
 </Diagrams>
</CurveFitTemplate>

4.1.1 User Inputs and Variable Substitution

The root of the configuration is the <UserInputs> section. This block defines

global variables such as nominal current (Inom), bus voltage (Vcc), or junction temperature

(Tvj) which establish the specific operating conditions of the dataset. Upon loading a

template, the parser identifies these tags and dynamically generates an interactive UI

table, prompting the user for numerical entry.

Internally, the Template Controller utilizes a containers.Map data structure to

store these key-value pairs. This map serves as a lookup table for variable substitution.

During the parsing of subsequent nodes, the algorithm inspects every attribute string for

the $ delimiter. If a string such as value="$Inom" is encountered, the system queries the

map and injects the corresponding numerical value into the object property. This

mechanism ensures that a generic template can be reused across different device ratings

simply by updating the input table.

4.1.2 Scaling Rules

The <ScalingRules> block defines the data normalization logic. Each rule is

encapsulated in a <Scale> tag containing four mandatory attributes: the target column

name (oldName), the desired variable name (newName), a multiplicative factor (scale),

and an additive offset (offset). This structure allows for the mapping of raw data columns

(e.g., "t_fall [s]") to standardized internal names (e.g., "tf [ns]") required by the plotting

engine.

4.1.3 System Selection Logic

The <SystemSelectionRules> section enables the automated segmentation of the

dataset. The schema employs a nested structure where a parent <SystemCriterium> tag

contains multiple child <Condition> tags. The logic implies an AND operation between

conditions within a criterium. The parser reads these definitions and passes them to the

 28

SystemFilterNode, where they are converted into logical vector masks that filter the data

table.

4.1.4 Diagram Definitions

The visualization logic is defined in the <Diagrams> section. This part of the

schema mirrors the hierarchical structure of the Diagram class. A <Diagram> element

defines the axes and limits, while nested <Sweeps> and <SweepCombination> elements

define the parameter sets required to generate specific curve families. The parser iterates

through these nested elements to instantiate the necessary objects, automatically

assigning the correct X and Y data sources and filtering conditions.

Implementation of Unit Scaling

The practical implementation of data normalization is encapsulated within the

ScaleNode class but is controlled via the main application workflow. The core logic

applies a linear transformation equation (𝑦 = 𝑚 ⋅ 𝑥 + 𝑐) to the data vectors.

To ensure the stability of the tool in a production laboratory environment, the

scaling algorithm was implemented with a strong focus on fault tolerance. Experimental

datasets frequently vary; a specific column defined in a standard template might be

missing from a specific measurement file due to channel configuration changes on the

oscilloscope. To handle this, the scaling iteration loop is wrapped in a try-catch block.

When the addScaledData method executes, it attempts to locate the oldName

column in the source table. If the column is missing, the system catches the exception,

logs a specific warning to the console, and gracefully skips that individual rule without

interrupting the execution of the remaining scaling operations. This design decision

ensures that the analysis pipeline remains robust, allowing engineers to visualize the

available data even if the dataset is partially incomplete.

Extended Curve Fitting Engine

The mathematical core of the application resides within the Curve class. To enable

the analysis of non-linear semiconductor characteristics without abandoning the

numerical stability of the Tikhonov-regularized linear solver, the fitting engine was

fundamentally refactored. The extended implementation introduces a "Transform-Solve-

 29

Inverse" architectural pattern, encapsulated primarily within the fitHelper and

regularizedPolyFitWeighted methods.

The process begins in the fitHelper method, which acts as a pre-processing

pipeline. Before any optimization occurs, the engine evaluates the state of the LogX and

LogY boolean properties. A critical step in this phase is data validation. Since the natural

logarithm function is undefined for non-positive values, the method applies a logical filter

to the raw data vectors. Data points where 𝑥 ≤ 0 𝑜𝑟 𝑦 ≤ 0 (depending on the active

axes) are automatically excluded from the fitting set. This defensive programming

ensures that the solver never encounters domain errors, which is particularly important

when handling raw measurement data that may contain zero-crossings due to sensor noise

or offset calibration issues.

Once validated, the data is projected into the target feature space. If a logarithmic

mode is active, the log transformation is applied to the respective vectors. The efficacy

of this transformation is illustrated in 4. Figure. The raw measurement data, exhibiting a

non-linear power-law decay (Left), is mapped to a linear trajectory within the logarithmic

feature space (Right).

4. Figure: Left: Raw Data (Left) vs Transformed Data (Right)

The solver constructs the Tikhonov regularization matrix (H) and the linear

constraint vectors within this transformed, normalized coordinate system. The

optimization problem is solved using the quadprog function from the MATLAB

Optimization Toolbox [20] (Interior-Point-Convex algorithm [4]) to determine the

optimal polynomial coefficients. Finally, the resulting curve is mapped back to the

original physical domain via the inverse transformation. For logarithmic axes, the exp()

function is applied to the fitted vector. This architecture ensures that the resulting curve

 30

strictly adheres to the physical trend such as a power law while maintaining the

smoothness properties enforced by the regularization term.

Hyperparameter Autotuning Algorithm

To automate the selection of the optimal mathematical model, the autoTuneFit

method was implemented within the Curve class. This method treats the fitting

configuration as a discrete optimization problem where the objective is to minimize the

Modified Akaike Information Criterion (AICc) derived in Chapter 3. Given the high

dimensionality of the search space comprising coordinate systems, polynomial orders,

and multiple physical constraints an exhaustive search would be computationally

prohibitive for real-time interaction. Consequently, the implementation utilizes a

deterministic Greedy Forward Selection strategy, executed in three sequential stages.

5. Figure: Flowchart of the Autotuning Logic

4.1.5 Step 1: Coordinate System Selection

The algorithm first seeks to identify the coordinate space that best linearizes the

data. To isolate the effect of the coordinate transformation from model complexity, the

polynomial order is temporarily fixed to a low baseline (Order = 2). The algorithm iterates

 31

through the four permutation states of the LogX and LogY properties (Linear, Semi-

LogX, Semi-LogY, and Log-Log). For each permutation, the Residual Sum of Squares

(RSS) is computed in the linear back-transformed space to ensure comparable error

metrics. The configuration yielding the lowest initial AICc score is committed as the

foundation for the subsequent steps.

4.1.6 Step 2: Complexity Optimization

With the optimal coordinate system locked, the algorithm proceeds to optimize

the model complexity. The logic iterates through polynomial orders ranging from 0

(constant) to 5. During this loop, the AICc score is calculated using the specific Alpha

penalty factor (α=10) implemented in the computeAICc helper function. This high

penalty factor imposes a strict barrier against overfitting; a higher-order polynomial is

selected only if it provides a reduction in residual error substantial enough to outweigh

the complexity cost. This step effectively locates the "knee point" of the error curve,

identifying the simplest polynomial that adequately captures the data trend.

4.1.7 Step 3: Constraint Selection (Greedy Approach)

The final stage refines the model by applying physical constraints. The

implementation utilizes a greedy search pattern to test constraints in a fixed hierarchy:

first Sign, then Monotonicity, and finally Curvature.

For each constraint type, the algorithm iteratively tests all available options (e.g.,

for Monotonicity: 'None', 'Rising', 'Falling'). A specialized scoring logic is applied here:

Final Score = 𝐴𝐼𝐶𝑚𝑜𝑑 − (γ × 𝑁𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠)

The autoTuneFit method explicitly defines the Gamma reward factor (𝛾 = 10). If

applying a constraint (e.g., forcing the curve to be monotonic) results in a score lower

than the current best score, the constraint is accepted and committed to the configuration.

This mathematical bias ensures that the algorithm prioritizes physically plausible models.

For example, even if a noisy dataset suggests a slight local oscillation, the reward factor

will drive the selection toward a monotonic curve if the increase in residual error is

minimal. This logic effectively replicates the decision-making process of an expert

engineer who prioritizes physical consistency over absolute fitting precision.

 32

5 Evaluation

This chapter presents the comprehensive evaluation of the developed Data-Sheet

Analysis Tool. The primary objective of this phase was to validate the functional

correctness of the template-driven architecture and to quantify the improvements in

analytical accuracy and workflow efficiency compared to the legacy manual approach.

The evaluation process was structured to isolate and verify each stage of the extended

pipeline, from initial data parsing to the final generation of mathematically optimized

diagrams.

Test Environment and Methodology

The software validation was conducted using MATLAB R2022b on standard

laboratory workstations. To ensure the results reflected real-world engineering

challenges, the evaluation utilized experimental datasets provided by Infineon

Technologies. These datasets consisted of characterization measurements for discrete

IGBT and MOSFET power devices, generated during standard double-pulse testing

procedures.

These specific datasets were selected because they represent the "worst-case"

scenarios for automated analysis. They are characterized by high dynamic ranges, with

currents spanning from milliampere-level leakage measurements to transient short-circuit

currents exceeding hundreds of Amperes. Furthermore, the data exhibits significant

stochastic noise, particularly in derivative-based parameters such as current slope (
𝑑𝑖

𝑑𝑡
) and

voltage slope (
𝑑𝑣

𝑑𝑡
), which are derived from high-speed oscilloscope acquisitions. The

validation methodology focused on three key performance indicators: the correct

propagation of XML configuration variables, the robustness of the logarithmic fitting

engine when applied to non-linear physical behaviors, and the ability of the Autotuning

algorithm to converge on physically plausible models without human intervention.

Verification of Automation Framework

The initial phase of testing focused on the verification of the XML Templating

System. A comprehensive test template, MOSFET_Template.xml, was developed to

define a complete characterization session. This template included definitions for user-

 33

defined global variables, scaling rules for twenty distinct measurement channels, and the

structural definitions for twelve unique diagrams.

5.1.1 Template Loading and Variable Substitution

The application's ability to parse and instantiate the analysis context was tested by

loading the XML template. Upon file selection, the Template Controller successfully

identified the <UserInputs> section and dynamically generated the interactive parameter

table within the user interface. Values entered by the operator such as the nominal current

(Inom), bus voltage (Vcc), and maximum junction temperature (TvjMax) were correctly

captured by the internal map container.

The propagation of these variables was verified by examining the downstream

filtering logic. The SystemFilterNode correctly substituted the user-defined voltage

thresholds (e.g., $Vgsoff) into the logical mask definitions. This allowed the software to

automatically segregate the raw dataset, distinguishing between high-side and low-side

switching events based on the dynamic criteria defined in the template, a task that

previously required manual row selection in external spreadsheet software.

5.1.2 Automated Unit Scaling

The robustness of the data normalization engine was verified through the

ScaleNode output. The raw measurement files contained data in base SI units (Joules for

energy, Seconds for time). The template defined transformation rules to convert these into

standard engineering units (milliJoules and nanoseconds). Inspection of the processed

data table confirmed that the linear transformations were applied correctly to all target

columns.

Furthermore, the fault-tolerance of the scaling logic was validated by intentionally

loading a raw dataset that was missing specific columns defined in the template. As

designed, the try-catch mechanism within the scaling loop successfully trapped the

missing column exception, logged a warning to the console, and proceeded to process the

remaining valid columns without terminating the application. This confirmed that the

architectural requirement for stability in the presence of inconsistent experimental data

was met.

 34

6. Figure: Unit Scaling Tab showing automatic conversion of units

Evaluation of Analytical Capabilities

A critical limitation of the previous linear solver was its inability to robustly model

the non-linear dependencies characteristic of power semiconductor switching behaviors.

To evaluate the effectiveness of the extended mathematical engine, a comparative

analysis was performed using the rate of current rise (
𝑑𝑖

𝑑𝑡
) as a function of the turn-on gate

resistance (Rgon). This relationship represents a fundamental trade-off in power

electronics: increasing the gate resistance slows down the switching transient, reducing

electromagnetic interference but increasing switching losses. Physically, this manifests

as an inverse or power-law decay curve which exhibits sharp curvature at low resistance

values and an asymptotic approach to zero at high resistance values.

When fitted using the legacy standard polynomial approach in a linear coordinate

system, the model frequently exhibited unphysical artifacts. To minimize the residual sum

of squares across the high-dynamic-range axis, high-order polynomials would oscillate

significantly, often dipping below zero in the asymptotic region to accommodate the steep

 35

gradient at the origin. These oscillations resulted in physically impossible negative values

for the current slope.

In contrast, the extended engine was tested using the Log-Log transformation

mode (𝑥′ = ln 𝑥, 𝑦′ = ln 𝑦). As illustrated in the resulting analysis, the solver

successfully linearized the data before optimization. The fit function generated by the

tool, expressed as 𝑦(𝑥) = 12.7 × exp(−0.316 ln(𝑥) − 0.0811 ln(𝑥)2), confirms that

the "Transform-Solve-Inverse" architecture functioned correctly. The resulting curve

adhered strictly to the physical trend, passing smoothly through the measurement points

without oscillation and maintaining a strictly positive trajectory throughout the domain.

This test confirmed that the integration of coordinate transformations allows the

Tikhonov-regularized solver to model complex power-law behaviors with high fidelity.

7. Figure: "didt vs Rgon" curve after auto-tuning

 36

Autotuning Performance and Workflow Analysis

The Hyperparameter Autotuning algorithm was evaluated to determine its ability

to replicate the decision-making process of an expert engineer. The evaluation utilized

the same
𝑑𝑖

𝑑𝑡
 dataset to verify the Greedy Forward Selection logic.

The execution log of the algorithm revealed the sequential optimization process.

In the first stage, the algorithm compared the Modified AICc scores across linear and

logarithmic coordinate systems, correctly identifying that the Log-Log space provided

the most significant reduction in linearization error. In the second stage, the algorithm

evaluated polynomial complexity. Despite the potential for a higher-order polynomial to

reduce the residual error marginally further, the Alpha penalty factor (α=10) imposed by

the Modified AICc metric heavily penalized complexity. Consequently, the algorithm

converged on a stable 2nd-order polynomial, effectively identifying the mathematical

"knee point" where additional complexity no longer yielded statistically significant

accuracy gains.

In the final stage, the constraint selection logic was verified. The greedy search

iteratively tested physical constraints. The algorithm correctly identified that applying a

"Monotonicity: Falling" constraint and a "Curvature: Convex" constraint improved the

overall optimization score. This improvement was driven by the Gamma reward factor

(γ=10), which incentivized the selection of a physically descriptive model over a purely

unconstrained mathematical fit. The final output was a smooth, monotonic, and convex

curve that aligned perfectly with theoretical expectations for a gate resistance

dependency.

To quantify the efficiency gains, a workflow timing analysis was conducted. In

the manual workflow, generating such a diagram required the user to visually inspect the

data, hypothesize the correct axis transformation, and iteratively adjust the polynomial

order and smoothing factors to remove oscillations. This process typically required

several minutes of interaction per diagram. The automated workflow shifted this burden

to computational complexity. Although the autotuning algorithm performed

approximately 70 to 80 quadratic programming solves to explore the search space, the

entire optimization process completed in less than two seconds on standard laboratory

hardware. This represents a time reduction of approximately 98% for the curve-fitting

 37

phase, while simultaneously ensuring that the generated models are mathematically

consistent and reproducible across different analysis sessions.

Below is a snippet of the MATLAB Console Output showing the Autotuning

progress step by step:

--- Starting Hyperparameter AutoTuning ---
Data Pre-check:
 - X-axis data is all positive. LogX will be tested.
 - Y-axis data is all positive. LogY will be tested.

--- Step 1: Tuning Log Scaling (using baseline PolyOrder=2) ---
 Testing LogX=0, LogY=0: RSS=34, n=39, k=3 -> AICc Score = 55.3601
 *** NEW BEST FOUND -> Score: 55.3601 ***
 Testing LogX=0, LogY=1: RSS=7.78, n=39, k=3 -> AICc Score = -2.2050
 *** NEW BEST FOUND -> Score: -2.2050 ***
 Testing LogX=1, LogY=0: RSS=0.189, n=39, k=3 -> AICc Score = -147.1032
 *** NEW BEST FOUND -> Score: -147.1032 ***
 Testing LogX=1, LogY=1: RSS=0.178, n=39, k=3 -> AICc Score = -149.5366
 *** NEW BEST FOUND -> Score: -149.5366 ***
 ==> Best Log Config Found: LogX=1, LogY=1

--- Step 2: Tuning Polynomial Order ---
 Testing PolyOrder=0: RSS=326, n=39, k=1 -> AICc Score = 102.9456
 Testing PolyOrder=1: RSS=4.23, n=39, k=2 -> AICc Score = -46.3134
 Testing PolyOrder=2: RSS=0.178, n=39, k=3 -> AICc Score = -149.5366
 Testing PolyOrder=3: RSS=0.178, n=39, k=4 -> AICc Score = -128.9455
 Testing PolyOrder=4: RSS=0.218, n=39, k=5 -> AICc Score = -100.5093
 Testing PolyOrder=5: RSS=0.184, n=39, k=6 -> AICc Score = -86.1928
 ==> Best Polynomial Order Found: 2

--- Step 3: Tuning Constraints (Greedy Forward Selection) ---
 -> Evaluating constraint type: Sign
 Testing Sign='None' : AICc=-149.5366, Reward=0.0 -> Final Score = -
149.5366
 Testing Sign='Positive': AICc=-115.4613, Reward=10.0 -> Final Score = -
125.4613
 Testing Sign='Negative': AICc=152.6612, Reward=10.0 -> Final Score =
142.6612
 -> No improvement found. Keeping Sign = 'None'.
 -> Evaluating constraint type: Monotonicity
 Testing Monotonicity='None' : AICc=-149.5366, Reward=0.0 -> Final
Score = -149.5366
 Testing Monotonicity='Rising' : AICc=190.3432, Reward=10.0 -> Final
Score = 180.3432
 Testing Monotonicity='Falling': AICc=-149.5366, Reward=10.0 -> Final
Score = -159.5366
 *** NEW BEST FOUND -> Committing Monotonicity = 'Falling', New Best
Score: -159.5366 ***
 -> Evaluating constraint type: Curvature
 Testing Curvature='None' : AICc=-149.5366, Reward=10.0 -> Final Score
= -159.5366
 Testing Curvature='Convex' : AICc=-149.5366, Reward=20.0 -> Final Score
= -169.5366
 Testing Curvature='Concave': AICc=143.5232, Reward=20.0 -> Final Score
= 123.5232

 38

 *** NEW BEST FOUND -> Committing Curvature = 'Convex', New Best Score:
-169.5366 ***

--- AutoTuning Complete. Applying Final Configuration ---
Final Best Score: -169.5366
 LogX: 1
 LogY: 1
 PolyOrder: 2
 Sign: 'None'
 Monotonicity: 'Falling'
 Curvature: 'Convex'

To provide a comprehensive overview of the validation results, the performance

metrics observed during the evaluation phase are synthesized in 1. Table: Comparative

Evaluation of Performance Metrics. This comparative analysis underscores the

substantial advancements in workflow efficiency and analytical fidelity achieved by the

automated framework relative to the legacy manual approach.

Metric Legacy Manual

Workflow

Automated

Framework

Outcome

Processing

Latency

Required

approximately 3–5

minutes per

diagram due to

iterative manual

adjustment.

Completed in less

than two seconds

via autonomous

optimization

algorithms.

~98% reduction in

the time required

for curve fitting

and diagram

generation.

Reproducibility Characterized by

subjectivity; results

were dependent on

operator intuition

and trial-and-error.

Deterministic;

governed by the

Modified Akaike

Information

Criterion (AICmod).

Elimination of

human variability,

ensuring consistent

results across

different analysis

sessions.

Analytical Fidelity Prone to numerical

instability (Runge’s

phenomenon) and

unphysical

negative artifacts.

Strictly adhered to

physical constraints

(e.g.,

Monotonicity,

Positivity,

Convexity).

Robust modeling of

non-linear

semiconductor

behaviors, even

with high-noise

datasets.

 39

Scalability Relied on

hardcoded logic;

required source

code modification

and recompilation

for new devices.

Driven by XML

templates; allows

for dynamic

runtime

reconfiguration.

Decoupled

architecture

enabling immediate

adaptation to novel

device topologies

without software

development.

1. Table: Comparative Evaluation of Performance Metrics

 40

6 Critical Assessment

The development of the Data-Sheet Analysis Tool represented a multifaceted

engineering challenge that required the synthesis of software architecture, mathematical

modeling, and user interface design. This chapter assesses the outcomes of the project

against the initial requirements defined in Chapter 2 and discusses the specific technical

challenges encountered during the implementation and verification phases.

Assessment of Completed Work

The primary objectives of this thesis to generalize the analysis workflow and to

automate the mathematical modeling process have been successfully met. The

transformation of the software from a rigid, code-dependent utility into a flexible,

template-driven framework was achieved through the design and implementation of the

XML Template Controller. By decoupling the analysis logic from the compiled source

code, the system now satisfies the requirement for scalability; laboratory engineers can

adapt the tool to novel device architectures and measurement protocols solely by

modifying external configuration files, without requiring intervention from software

developers.

From an analytical perspective, the integration of the coordinate transformation

engine has resolved the tool's previous inability to robustly model non-linear physical

behaviors. The Tikhonov-regularized solver, originally limited to linear polynomial

fitting, now operates effectively across logarithmic and semi-logarithmic domains. This

extension ensures that critical semiconductor parameters, such as power-law switching

energy dependencies and exponential leakage currents, are modeled with high fidelity.

Furthermore, the development of the Hyperparameter Autotuning algorithm has

successfully removed the subjectivity from the curve-fitting process. By utilizing the

Modified Akaike Information Criterion, the software consistently selects models that

balance statistical accuracy with physical plausibility, thereby ensuring reproducibility

across different analysis sessions and reducing the manual effort required to generate

publication-ready diagrams.

 41

Challenges Encountered

A significant challenge during the development phase was the calibration of the

Autotuning Algorithm. While the Akaike Information Criterion is a standard statistical

measure for model selection, the concept of "visual smoothness" required for datasheets

is a subjective engineering preference that is difficult to quantify mathematically. Finding

the optimal balance for the empirical Alpha (complexity penalty) and Gamma (constraint

reward) factors required extensive testing with real-world datasets. Initial experiments

revealed that standard AICc penalties were insufficient for high-noise oscilloscope data,

often leading the algorithm to select high-order polynomials that modeled the noise rather

than the signal. Conversely, an excessively high Gamma factor occasionally forced the

selection of overly simplistic models that ignored genuine trend inflections. A robust set

of default factors was eventually determined empirically, ensuring the algorithm behaves

consistently across the typical dynamic ranges found in power electronics measurements.

In addition to algorithmic tuning, the extension of the reactive architecture

introduced complex state-management issues. The underlying reactive graph relies on

persistent listeners to propagate data changes. Dynamically reconfiguring this graph

destroying old diagram objects and instantiating new ones when a template is loaded

created synchronization challenges. Early iterations of the software suffered from

memory leaks and execution errors caused by "zombie" listeners attempting to update

deleted figures. This was resolved by implementing a rigorous cleanup protocol within

the base node classes, ensuring that all event listeners are explicitly detached and object

handles are cleared before the state is reset.

Future Development Options

While the developed tool successfully streamlines the interactive analysis

workflow, the evaluation identified a clear pathway for further automation through batch

processing. Currently, the Autotuning function must be triggered manually for each curve

or diagram to allow the user to verify the result. A logical future enhancement would be

to integrate autotuning instructions directly into the XML schema. By introducing a

specific attribute—for example, a flag indicating that a specific curve should be auto-

tuned upon loading—the software could iterate through the entire session immediately

after the template is applied. This would enable the generation of a complete,

 42

mathematically optimized report containing dozens of diagrams with zero additional user

interaction, further accelerating the characterization cycle for standardized products.

 43

7 Conclusion

 The analysis of experimental measurement data constitutes a cornerstone of power

semiconductor development. As device complexity increases to meet the demands of

modern energy efficiency standards, the reliance on manual data processing workflows

has emerged as a significant bottleneck, introducing latency and potential inconsistencies

into the datasheet generation process. The necessity to characterize devices under a wide

array of operating conditions generates vast datasets that require meticulous filtering,

scaling, and mathematical modeling to extract meaningful physical parameters.

This thesis presented the design and implementation of an advanced Data-Sheet

Analysis Tool aimed at resolving these challenges through the principles of automation

and generalization. By extending an existing MATLAB App Designer framework, the

project introduced a robust XML-based templating system. This architectural innovation

allows laboratory engineers to externalize the logic for data filtering, unit scaling, and

diagram definition, effectively decoupling the analysis configuration from the application

source code. Consequently, the software has been transformed from a rigid, device-

specific utility into a flexible platform adaptable to any semiconductor technology

without requiring code modification.

Furthermore, the analytical capabilities of the tool were significantly expanded to

address the specific physical behaviors of power devices. The implementation of a

Tikhonov-regularized solver capable of coordinate transformations ensures that non-

linear characteristics—such as exponential leakage currents and power-law switching

energy dependencies—are modeled with high fidelity and numerical stability. The

introduction of the Hyperparameter Autotuning algorithm, driven by a modified Akaike

Information Criterion with specific penalties for complexity and rewards for physical

constraints, guarantees that the generated curves are not only mathematically optimal but

also adhere to the physical laws of the system.

In conclusion, the developed tool successfully transforms a fragmented, manual

workflow into a streamlined, reproducible, and highly efficient process. It empowers

laboratory engineers at Infineon Technologies to focus on the interpretation of device

physics rather than the mechanics of data manipulation, thereby significantly accelerating

 44

the characterization and development cycle of next-generation power electronic

components.

 45

References

[1] J. Lutz, H. Schlangenotto, U. Scheuermann, and R. De Doncker, Semiconductor

Power Devices: Physics, Characteristics, Reliability, 2nd ed. Berlin, Germany:

Springer-Verlag, 2011.

[2] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical

Aspects of Linear Inversion. Philadelphia, PA: SIAM, 1998.

[3] C. M. Hurvich and C. L. Tsai, "Regression and time series model selection in

small samples," Biometrika, vol. 76, no. 2, pp. 297–307, 1989.

[4] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York, NY:

Springer, 2006.

[5] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference:

A Practical Information-Theoretic Approach, 2nd ed. New York, NY: Springer-

Verlag, 2002.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994.

[7] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. Washington,

DC: V. H. Winston & Sons, 1977.

[8] B. J. Baliga, Fundamentals of Power Semiconductor Devices. New York, NY:

Springer Science & Business Media, 2008.

[9] Semiconductor devices – Part 9: Discrete devices – Insulated-gate bipolar

transistors (IGBTs), IEC 60747-9:2007, International Electrotechnical

Commission, 2007.

[10] Infineon Technologies AG, "Definition of Switching Losses for IGBTs and

MOSFETs," Application Note AN-2015-06, V1.0, Munich, Germany, 2015.

[11] H. Akaike, "A new look at the statistical model identification," IEEE Transactions

on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed. Baltimore, MD:

Johns Hopkins University Press, 2013.

[13] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. Englewood

Cliffs, NJ: Prentice-Hall, 1974.

[14] N. Sugiura, "Further analysis of the data by Akaike's information criterion and the

finite corrections," Communications in Statistics - Theory and Methods, vol. 7,

no. 1, pp. 13–26, 1978.

[15] I. Sommerville, Software Engineering, 10th ed. Boston, MA: Pearson, 2015.

 46

[16] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship. Upper

Saddle River, NJ: Prentice Hall, 2008.

[17] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA:

Addison-Wesley, 2002.

[18] E. R. Harold and W. S. Means, XML in a Nutshell, 3rd ed. Sebastopol, CA:

O'Reilly Media, 2004.

[19] MathWorks, MATLAB App Designer User's Guide, R2022b. Natick, MA: The

MathWorks, Inc., 2022.

[20] MathWorks, Optimization Toolbox User's Guide, R2022b. Natick, MA: The

MathWorks, Inc., 2022.

[21] J. Tidwell, Designing Interfaces: Patterns for Effective Interaction Design, 2nd ed.

Sebastopol, CA: O'Reilly Media, 2010.

[22] W. S. Cleveland, The Elements of Graphing Data, 2nd ed. Summit, NJ: Hobart

Press, 1994.

 47

Annex

I. Declaration on the Use of Generative Artificial Intelligence

 I have not used any generative AI tools.

 I have used generative AI tools. I have verified the content generated by AI, ensured

the accuracy of the outputs, and properly indicated each instance of use in the table

below.

Usage type

Name of Generative AI

Tool(s)

Affected Sections

(chapter, page number,

reference)

Estimated Proportion of

Use (per usage type)

Literature Review
Chatgpt 4 Chapters 1 to 7

40% of the text was

checked/improved

Brief Summary

of the Prompt

Language proofreading and style improvement.

Program Code

Generation

Brief Summary

of the Prompt

Generating New Ideas or

Solution Proposals

Brief Summary

of the Prompt

Creating an Outline (text

structure, bullet points)

Brief Summary

of the Prompt

Creating Text Blocks

Brief Summary

of the Prompt

Generating Images for

Illustrative Purposes

Brief Summary

of the Prompt

 48

Data Visualization,

Generating Charts Based

on Data Points

Brief Summary

of the Prompt

Preparing a Presentation

Brief Summary

of the Prompt

Other (please specify)

Brief Summary

of the Prompt

Proofreading and finding errors

Aggregated Percentage Value (for the core part of the task) 0%

Brief Textual Justification of the Aggregated Value:

I performed the professional content, research, measurements, and software development independently. I used

generative AI exclusively to check the grammar of the English text written by myself and to improve the scientific

style and vocabulary. The AI did not add any new professional ideas or results to the thesis.

II . Attachements

The following digital artifacts are attached to this thesis to demonstrate the

functionality of the developed tool. all the attachments can be found in the Digital

repository linked at 4:

1. DataSheetAnalysisTool.exe: The standalone compiled executable of the

developed software. This application runs the full analysis pipeline

demonstrated in the evaluation chapter.

2. MOSFET_Template.xml: The XML configuration file used for the

primary evaluation cases (Switching energy, Di/Dt).

3. IGBT_Template.xml: An additional configuration template demonstrating

the adaptability of the system to different device technologies.

 49

4. Digital Repositoryi: Snippets of code, Functions and methods developed

for this thesis. https://github.com/abdel-ahbane/DataSheet-Analysis-

Automation-Tool

i The complete source code for the application is proprietary to Infineon Technologies and is not

included in the public repository. The core algorithms developed specifically for this thesis (Autotuning

and Logarithmic Logic) are documented in the annexed Digital repository.

https://github.com/abdel-ahbane/DataSheet-Analysis-Automation-Tool
https://github.com/abdel-ahbane/DataSheet-Analysis-Automation-Tool

