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Summary

A time reduction of approximately 98% in the curve-fitting phase is achieved by
the automated framework developed in this thesis. This significant efficiency gain is
utilized to streamline the characterization of power semiconductor devices, such as
Insulated Gate Bipolar Transistors (IGBTs) and Metal-Oxide-Semiconductor Field-
Effect Transistors (MOSFETS), thereby transforming a historically labor-intensive
process into a reproducible and rapid workflow. The characterization of these power
semiconductor devices, constitutes a critical phase in the development of modern power
electronics. To ensure reliability and efficiency, Development Lab Engineers at Infineon
Technologies generate vast quantities of experimental measurement data that must be
synthesized into accurate Data-Sheets. However, the transition from raw measurement
files to finalized, mathematically consistent diagrams is historically a fragmented,

manual, and time-consuming process, prone to variability and human error.

The objective of this thesis is to streamline this workflow by transforming an
existing MATLAB-based analysis tool into a generalized, template-driven framework.
The primary engineering contribution of this work is the design and implementation of a
flexible XML-based configuration system. This architecture allows engineers to
externalize the logic for data filtering, unit scaling, and diagram definition, thereby
ensuring reproducibility across different device types without requiring modification to

the source code.

Furthermore, the analytical capabilities of the software were significantly
enhanced to support the autonomous modeling of non-linear semiconductor physics. A
Tikhonov-regularized solver was implemented with a coordinate transformation engine,
enabling the robust fitting of exponential and power-law behaviors. To eliminate the
subjectivity of manual parameter tuning, a Hyperparameter Autotuning algorithm was
developed. This feature utilizes a Modified Akaike Information Criterion (AICc)—
incorporating specific penalties for model complexity and rewards for physical
constraints—to automatically select the optimal mathematical model. The developed tool
successfully reduces manual intervention and significantly accelerates the Data-Sheet
generation process while guaranteeing high standards of analytical consistency.



Résumé

Une réduction du temps d'environ 98 % lors de la phase d'ajustement de courbe
est obtenue grace au cadre automatisé développé dans cette these. Ce gain d'efficacité
significatif est mis a profit pour rationaliser la caractérisation des dispositifs semi-
conducteurs de puissance, tels que les transistors bipolaires a grille isolée (IGBT) et les
transistors a effet de champ a structure métal-oxyde-semi-conducteur (MOSFET),
transformant ainsi un processus historiquement laborieux en un flux de travail rapide et
reproductible. La caractérisation de ces dispositifs constitue une étape cruciale dans le
développement de I'électronique de puissance moderne. Afin de garantir fiabilité et
efficacité, les ingénieurs des laboratoires de développement chez Infineon Technologies
génerent de vastes quantités de données de mesure expérimentales qui doivent étre
synthétisées en fiches techniques précises. Cependant, la transition des fichiers de
mesures brutes vers des diagrammes finalisés et mathématiquement cohérents est
historiquement un processus fragmenté, manuel et chronophage, sujet a la variabilité et

aux erreurs humaines.

L'objectif de cette thése est de rationaliser ce flux de travail en transformant un
outil d'analyse existant sous MATLAB en un cadre généralisé piloté par des modéles. La
principale contribution technique de ce travail réside dans la conception et la mise en
ceuvre d'un systéme de configuration flexible basé sur XML. Cette architecture permet
aux ingénieurs d'externaliser la logique de filtrage des données, de mise a I'échelle des
unités et de definition des diagrammes, assurant ainsi une reproductibilité entre différents
types de dispositifs sans nécessiter de modification du code source.

De plus, les capacités analytiques du logiciel ont été considérablement améliorées
pour permettre la modélisation autonome de la physique non linéaire des semi-
conducteurs. Un solveur régularisé de Tikhonov a été implémenté conjointement avec un
moteur de transformation de coordonnées, permettant I'ajustement robuste des
comportements exponentiels et des lois de puissance. Afin d'éliminer la subjectivité du
réglage manuel des parameétres, un algorithme de réglage automatique des
hyperparametres a été développé. Cette fonctionnalité exploite un Critére d'Information
d'Akaike corrigé (AICc) modifié intégrant des pénalités spécifiques pour la complexité

du modele et des récompenses pour le respect des contraintes physiques, pour sélectionner



automatiguement le modele mathématique optimal. L'outil développé réduit avec succés
les interventions manuelles et accélére significativement le processus de génération des

fiches techniques, tout en garantissant des normes élevées de cohérence analytique.
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1 Introduction

Background and Motivation

The continuous evolution of power electronics is a driving force behind the global
transition towards higher energy efficiency. Modern applications, ranging from electric
vehicle traction inverters to renewable energy grid integration, place increasingly
stringent demands on power semiconductor devices. Consequently, the characterization
and verification of components such as Insulated Gate Bipolar Transistors (IGBTs) and
Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETSs) have become critical
phases in the product development lifecycle [1][8]. Companies like Infineon
Technologies operate at the forefront of this field, ensuring that every component meets

rigorous performance and reliability standards before reaching the market.

A central output of this characterization process is the device Data-Sheet. This
comprehensive document serves as the primary reference for system designers, providing
essential thermal, electrical, and switching characteristics derived from extensive
experimental measurements, often standardized by international electrotechnical
guidelines [9]. Development laboratory engineers generate vast quantities of raw data by
testing devices under a wide spectrum of operating conditions, including varying
temperatures, gate voltages, and load currents, as defined in standard switching loss
protocols [10]. The accuracy and clarity of the diagrams presented in these Data-Sheets
are paramount, as they directly influence the design decisions made by engineers
worldwide [22].

However, the transition from raw experimental measurement data to publication-
ready diagrams is a complex and historically labor-intensive process. Raw measurement
files, typically generated by high-speed oscilloscopes and data loggers, often contain
significant noise and are recorded in base Sl units that differ from the engineering units
required for documentation. Furthermore, the data often represents a mix of distinct
system states, such as high-side versus low-side switching events in a half-bridge
configuration that must be meticulously separated before analysis. When performed
manually, the tasks of filtering, scaling, and curve fitting are not only time-consuming
but also prone to human error, potentially introducing inconsistencies into the final

documentation.

11



Problem Statement

While software tools exist to assist with data visualization, the standard workflows
often lack the flexibility required to keep pace with the rapidly expanding variety of
device architectures. The legacy analysis framework utilized within the laboratory
provided a stable architectural foundation but relied on static, hardcoded configurations
optimized for specific device types. As the scope of characterization expanded to include
novel MOSFET topologies and increasingly complex measurement protocols, the rigidity
of this approach became a bottleneck. Engineers were frequently required to request
software modifications for routine configuration changes, creating a dependency that

slowed the analysis cycle.

A significant challenge within this workflow is the mathematical modeling of
device characteristics. Experimental data is inherently noisy, and fitting smooth curves to
this data is essential for extracting meaningful parameters. In a manual workflow, finding
the optimal mathematical model involves a trial-and-error process where the engineer
must iteratively adjust polynomial orders and smoothing factors. This approach relies
heavily on user intuition, leading to a lack of reproducibility; different engineers might
produce slightly different curves for the same dataset.

Furthermore, standard polynomial fitting methods are frequently insufficient for
the robust modeling of non-linear physical behaviors, such as exponential leakage
currents or power-law switching energy distributions. Consequently, significant manual
intervention is required to constrain the generated curves into physically plausible
trajectories. From a numerical perspective, the approximation of these complex behaviors
using high-order polynomials on noisy data is recognized as an ill-posed problem [2][7].
This formulation often results in numerical instability and overfitting, thereby limiting

the reliability of the analysis.

Objectives

The primary objective of this thesis is to design and implement a comprehensive
extension to the existing Data-Sheet Analysis Tool, transforming it into a generalized,
automated framework. The work aims to eliminate the bottlenecks associated with
manual data processing by introducing a flexible, template-driven architecture. This

system allows laboratory engineers to define complex analysis logic—including data
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filtering, unit scaling, and diagram definition—uvia external configuration files, thereby

decoupling the analysis parameters from the compiled source code.

Technically, the project seeks to enhance the analytical capabilities of the software
by integrating advanced mathematical processing engines. A key goal is the
implementation of a robust solver capable of handling logarithmic coordinate
transformations, ensuring that non-linear semiconductor physics can be modeled
accurately. Furthermore, the thesis aims to develop an intelligent Hyperparameter
Autotuning algorithm. By utilizing a modified statistical selection criterion, this algorithm
is designed to automatically identify the optimal curve-fitting configuration that balances
mathematical accuracy with adherence to physical constraints, such as monotonicity and
positivity. The ultimate goal is to provide a tool that significantly accelerates the Data-
Sheet generation process while guaranteeing high standards of consistency and

reproducibility.

Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides a detailed
analysis of the task, examining the state of the art of the existing software architecture
and specifying the functional requirements for the extended framework. Chapter 3
outlines the theoretical preliminaries, deriving the mathematical formulations for
Tikhonov regularization, the coordinate transformations used for logarithmic fitting, and
the statistical criteria for model selection. Chapter 4 details the design and implementation
of the engineering solution, describing the development of the XML template parser, the
extended mathematical engine, and the autotuning algorithm. Chapter 5 presents the
evaluation of the tool, verifying the automation framework and quantifying the
improvements in analytical accuracy and workflow efficiency through test cases using
real-world MOSFET data. Chapter 6 offers a critical assessment of the completed work,
discussing the challenges encountered and potential areas for future development. Finally,

Chapter 7 summarizes the contributions of the thesis.
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2 Problem Analysis and Requirements

State of the Art

The software framework initially utilized by the development laboratory was built
upon the MATLAB App Designer platform [19], providing a graphical environment for
the post-processing of semiconductor measurement data. The architectural backbone of
this application was a reactive node system, a design pattern that manages data
dependencies through a directed acyclic graph. In this architecture, data flows from
source nodes (file loaders) to calculation nodes (scalers, filters) and finally to presentation
nodes (tables, diagrams). A key strength of this existing architecture was its
implementation of lazy evaluation [17]; mathematical operations were executed only
when the final output was explicitly requested by the user, ensuring that the application

remained responsive even when varying large datasets.

In terms of user experience, the legacy interface was designed around a linear,
procedural workflow, adhering to standard interaction design patterns [21]. The user was
required to navigate sequentially through a series of tabs, progressing from left to right.
The process began with data loading, followed by a manual configuration step where
specific measurement parameters were entered into a fixed form. 1. Figure illustrates this
legacy "Template Selection” interface. The design relied on a pre-defined set of input
fields specifically tailored to established technologies, such as standard IGBT modules.
Users would select the device technology from a dropdown menu, which would populate
the interface with a static set of variables required for that specific device type.

14
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1. Figure: Legacy Template Selection Interface.

Workflow Challenges

Despite the robustness of the underlying reactive architecture, the operational
workflow exhibited significant scalability challenges as the scope of device
characterization expanded. The primary limitation was the rigid coupling between the
measurement definition and the application source code. As demonstrated in 1.Figure, the
template logic—defining which variables were required and how they should be
processed—was hardcoded within the application. This meant that the tool offered no
intrinsic flexibility for the end-user to customize the analysis structure. If a new
measurement protocol was introduced, or if a novel device architecture (such as a
MOSFET with complex body-diode behavior) required additional parameters not present
in the standard IGBT form, the software source code had to be manually modified and
recompiled. This dependency created a bottleneck, preventing laboratory engineers from

autonomously adapting the tool to evolving test requirements.

Furthermore, the data conditioning phase represented a substantial manual

overhead. In the legacy workflow, the segmentation of raw data—distinguishing between
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different system states or operating modes—required interactive user intervention.
Engineers had to manually configure filtering parameters for each session, a process that
was not only time-consuming but also susceptible to human error. Similarly, the
mathematical analysis of the curves was a "human-in-the-loop™ process. The user was
required to inspect each curve visually and manually adjust fitting parameters to achieve
a satisfactory representation. This trial-and-error approach introduced latency and
potential inconsistency, as the criteria for a "good fit" were subjective and dependent on

the individual engineer’s judgment.

Requirements Specification

To address these limitations and transform the specialized tool into a generalized
analysis framework, a comprehensive set of functional requirements was defined. The
overarching objective was to decouple the analysis logic from the application logic,
thereby enabling a fully data-driven workflow.

The primary requirement was the design and implementation of a flexible, XML-
based templating system. The application was required to parse external configuration
files that define the complete analysis context. This includes the definition of user inputs,
the rules for unit scaling and data normalization, and the logic for system state filtering.
By externalizing these definitions, the tool would allow engineers to create and modify
analysis templates without altering the codebase. The workflow was to be streamlined
such that a user could simply load a raw data file and an XML template, after which the
system would automatically propagate the configuration to all downstream processes,

populating tables and diagrams instantaneously.

Mathematically, the system required significant enhancement to support the
autonomous modeling of non-linear semiconductor physics. The linear solver needed to
be extended to support logarithmic coordinate transformations, enabling the robust fitting
of exponential and power-law behaviors that are characteristic of modern power devices.
Furthermore, to eliminate the subjectivity of manual fitting, the software required an
intelligent Hyperparameter Autotuning algorithm. This algorithm was required to
automatically explore the search space of possible mathematical models—varying
polynomial orders, coordinate systems, and physical constraints—and select the optimal

configuration based on a statistically rigorous criterion. The combination of these features
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aimed to produce a "one-click" analysis experience, where the software delivers
publication-ready diagrams immediately upon template application.

17



3 Theoretical Preliminaries

This chapter outlines the mathematical foundations that underpin the analytical
capabilities of the developed software framework. To ensure the accurate extraction of
physical parameters from noisy experimental data, the system relies on advanced
regularization techniques, domain-specific coordinate transformations, and statistical
model selection criteria. The following sections derive the mathematical formulations
used to ensure both numerical stability and physical plausibility in the curve-fitting

process.

Regularized Least Squares (Tikhonov Regularization)

The core analytical task involves approximating a smooth scalar function f(x)
given a set of discrete, noisy measurement pairs (x;,y;) where i = 1,2,...,N. In the
context of semiconductor characterization, the data often contains stochastic noise
derived from high-speed switching events. A standard Ordinary Least Squares (OLS)
approach seeks to minimize the sum of squared residuals between the model and the
observations. However, when high-order polynomials are used to approximate complex
behaviors, the OLS formulation becomes an ill-posed problem [2]. This frequently leads
to overfitting, where the fitted curve exhibits high-frequency oscillations—known as
Runge’s phenomenon—at the boundaries of the domain to minimize the residual error of

specific noise points.

To mitigate this instability, the mathematical engine employs Tikhonov
Regularization. Instead of minimizing the residual error in isolation, the algorithm
minimizes a composite cost function J that includes a regularization term penalizing the
complexity or "roughness"” of the solution. The continuous form of the objective function

is defined as:

J®) = 2L wi(y; — f(xi))z + A f (len/:)z dx

In this formulation, w; represents the weight assigned to each data point, allowing
for the prioritization of specific measurement ranges. The second term represents the
regularization penalty, where 1 > 0 is the Tikhonov factor (smoothing parameter). The

integral measures the energy of the m — th derivative of the function. For this application,
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the second derivative (m = 2) is utilized to penalize curvature, thereby favoring smoother
trajectories that are physically characteristic of thermal and electrical semiconductor

responses.

To solve this numerically, the problem is discretized. The function f(x) is
approximated by a polynomial of degree k, which can be expressed as a linear
combination of basis functions (powers of x). The optimization problem is then

formulated in matrix notation. Let y be the vector of observed values and V be the
Vandermonde matrix [12] where V;; = xl’ The coefficients ¢ of the polynomial are

determined by minimizing the discrete form of the cost function, a variation of the
standard linear least squares problem [13]:

J©) = 1WY2(y = Vo) I3 + Al Lell}

Here, W is the diagonal weight matrix, and L is the Tikhonov matrix, which
represents the discrete difference operator corresponding to the second derivative. The
minimization of this quadratic form, subject to linear inequality constraints (such as
positivity or monotonicity), constitutes a Quadratic Programming (QP) problem. The
solver identifies the optimal coefficient vector ¢ that satisfies the physical constraints

while minimizing the weighted sum of the residual error and the curvature penalty.

Coordinate Transformations and Logarithmic Linearization

While Tikhonov regularization ensures numerical stability for polynomial fitting,
the fundamental physical characteristics of semiconductor devices often adhere to non-
linear laws that are not optimally approximated by polynomials in a Cartesian coordinate
system. For instance, switching energy losses (E,..) frequently scale with gate resistance
according to a power law, whereas leakage currents typically exhibit an exponential
dependence on temperature or voltage. To extend the applicability of the linear Tikhonov
solver to these non-linear domains, a Coordinate Transformation Engine was
implemented. This methodology relies on the principle of linearization, wherein the
original data space D is mapped to a feature space F via a bijective transformation
®(x,y) = (u,v). The polynomial fitting is subsequently executed within this feature
space, and the result is mapped back to the original domain via the inverse transformation
Pt
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To address power-law relationships of the form y = Ax*. the Log-Log
transformation is utilized. Linearization is achieved by taking the natural logarithm of

both sides, yielding the equation:
In(y) =In(A) + k - In(x)

The transformation is defined as u = In(x) and v = In(y). In this space, a first-
order polynomial P(u) = c;u + ¢, corresponds directly to the physical parameters,
where the slope c; represents the exponent k, and the intercept ¢, corresponds to [n(A4).
This transformation allows the linear solver to determine the exponent of the power law

deterministically without requiring iterative non-linear optimization methods.

Analogously, exponential relationships of the form y = Ae®* are modeled via the
Semi-Log Y transformation. The linearization is achieved by taking the logarithm of the

dependent variable:
In(y)=In(A)+B-x

The mapping is defined as u = x and v = In(y). A linear fit v = c;u + ¢, in this
space maps back to the exponential function, where the coefficient B = ¢; and the scaling
factor A = e°°. This mode is particularly effective for modeling leakage currents or diode
forward characteristics in the sub-threshold region. Furthermore, for processes that evolve
over several orders of magnitude in the independent variable, the Semi-Log X
transformation is employed. The relationship y = A + B - In(x) is linearized by the

mapping u = In(x) and v = y.

It is imperative to note that the mathematical derivations provided above illustrate
the fundamental first-order cases (P(u) = c,u + c,). However, the mathematical engine
is not restricted to these linear approximations within the feature space. When the
polynomial order is increased, the complexity of the back-transformed function increases
significantly. For example, a second-order fit performed within the Log-Log domain
corresponds to a function of the form y = A - xB+¢InX)_ Thijs capability allows the
system to capture subtle variations and second-order effects in the physical data while
retaining the stability benefits of the Tikhonov solver. By pre-processing the
measurement vectors x and y into the vectors u and v before constructing the
Vandermonde matrices, the stable Regularized Least Squares engine described in Section
0 is effectively reused to solve for non-linear physical parameters.

20



Model Selection Criteria

Automating the curve-fitting process requires a quantitative metric to compare the
validity of different mathematical models, such as determining whether a 2nd-order or
5th-order polynomial provides a superior representation of the data. The standard
statistical metric for such selection is the Akaike Information Criterion (AIC) [11], which
estimates the relative information loss of a given model [5]. For datasets with finite
sample sizes N, the Corrected AIC (AICc) is preferred to prevent the selection of over-
parameterized models, a correction originally proposed to address bias in small-sample

statistics [3][14]. The standard formulation for AlCc in the context of least squares is:

AIC. = N1 (RSS)+2k+2k(k+ D
c =Ny N—k—1

Where RSS is the Residual Sum of Squares, and k is the number of estimated
parameters (polynomial order + 1). However, in the context of datasheet generation,
properties such as "visual smoothness” and adherence to physical laws are often more
critical than minimizing the absolute residual error of noisy data. It was observed that the
standard AICc tends to be too permissible regarding model complexity, frequently
selecting higher-order polynomials that capture measurement noise rather than the
underlying physical trend.

To address this limitation, a Modified AIC,,,; metric was derived for this
framework, introducing two empirical hyperparameters: an Alpha factor (a) and a
Gamma factor (y). The Alpha factor serves as an enhanced complexity penalty. By
scaling the standard penalty term 2k by «. a significantly heavier cost is imposed on
increasing the polynomial order. The modified AIC,,,4 is formulated as.

2k(k+1)

RSS
AlCppq = Nln (—) + 2ka + m

N

For this application, « is set to 10 based on empirical tuning. This high penalty
ensures that the algorithm rejects higher-order models unless they provide a statistically
overwhelming improvement in the RSS, thereby biasing the selection towards simpler,

more robust functions.

To further prioritize physical plausibility, a reward term is introduced via the

Gamma factor. If a model configuration successfully converges while satisfying a
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physical constraint such as Monotonicity or Positivity, the optimization score is reduced

by the Gamma factor (y).

Reward onstraint = V * Nactiveconstraints

For this implementation, y is set to 10. This value was selected to sufficiently
incentivize the selection of physically constrained models without overriding the
fundamental data trend if the error becomes too large. Consequently, the final
optimization score utilized by the Autotuning algorithm combines the modified

complexity penalty and the constraint reward:
Final Score = AlCyy0q — (Y X Neonstraints)

This modified criterion mathematically formalizes the engineering preference for
simple, monotonic, and physically consistent models. By balancing error reduction with
strict complexity penalties and constraint rewards, the software is enabled to

autonomously make decisions that align with expert human judgment.
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4 Design and Implementation

This chapter details the software engineering methodologies applied to transform
the legacy analysis tool into a flexible, template-driven framework. The implementation
follows a strict Object-Oriented Programming (OOP) paradigm [15] within the MATLAB
App Designer environment, adhering to principles of clean code architecture [16]. The
design strategy focused on decoupling the measurement configuration logic from the
compiled application code, achieved through the development of a custom XML parsing

engine and the extension of the underlying reactive data flow architecture.

Overview of the Extended Architecture

The software is built on a Model-View-Controller (MVC) architecture pattern [6].
The View is represented by the App Designer graphical interface, while the Model is
encapsulated within a Reactive Node System. It is important to note that the base
CalcNode class and the fundamental concept of the reactive graph were established in a
previous iteration of the software. The primary architectural contribution of this thesis is
the design of the Template Controller and the specific implementations of the data
processing nodes (ScaleNode, SystemFilterNode) that utilize this infrastructure to support

dynamic reconfiguration.

The reactive architecture operates on a Directed Acyclic Graph (DAG) principle,
utilizing a "Pull" mechanism or Lazy Evaluation. In this system, a node does not
automatically push data to its dependents when a change occurs. Instead, it marks itself
and its dependents as "dirty." Calculation only occurs when a terminal node (such as a
Diagram or Table) explicitly requests data. This design is critical for performance, as it
prevents the unnecessary execution of computationally expensive fitting algorithms

during intermediate configuration steps.

The extended data flow hierarchy implemented in this work is structured as

follows:

FileNode (Source): This node acts as the entry point, wrapping standard
MATLAB file I/0O operations. It is responsible for loading heterogeneous raw data
formats (.txt, .csv, .xIsx) and merging them into a unified MATLAB table object.
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ScaleNode (Intermediate): A dependent node that consumes the raw table from
FileNode. It applies linear transformations to convert base units into engineering units

based on injected scaling rules.

SystemFilterNode (Intermediate): A dependent node that consumes the scaled
table. It implements a subtractive filtering logic to categorize data rows (e.g., "High-Side"

vs. "Low-Side") based on boolean masks.

Diagram and Curve (Terminal): These objects represent the final analytical
output. They request processed data from the SystemFilterNode and perform the

mathematical curve fitting.

The Template Controller, implemented within the main application class
(CurveFitting.mlapp), acts as the orchestrator. Upon loading an XML template, this
controller parses the definition and programmatically instantiates and links these nodes,

effectively rewriting the analysis logic at runtime without requiring a software recompile.

CurveFitting

+ FileNodeObj : FileNode

+ ScaleNodeObj : ScaleNode
+ SystemFilterNodeObj :
SystemFilterNode

+ FilterNodeObj : FilterNode

+ startupFen()
+ AutoTuneButtonPushed ()

+ createRepaort():
¢ ¢

FilterNode

SystemFilterNode - Conditions : cell

FileNode ScaleNode

+ SelectedSystem : Ma|
+ Filenames - CalcNode : CalcNode +Criteria : Cill P

- OutputTable

- applyFilter(inputTable)
+ setConditions(conditions)

= addScaledData(input) - filterSystem(table)

+addFile(filename)
+ markDirty() - addSystemNameToTable()

-readAndMergeTables()

CalcNode

+ roundingMode : string - value : any
+ roundingValue : double - dirty : boolean

TableValue

- roundNumber({input)

2. Figure: Simplified UML Class Structure diagram

The XML Template Framework

To satisfy the primary requirement of generalization, a robust configuration
system was necessary to decouple the analysis logic from the compiled application code.
The Extensible Markup Language (XML) [18] was selected as the unified configuration
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standard for this framework. This design choice was driven by several key technical and
operational advantages suited to the MATLAB environment and the end-user profile.

Firstly, the strict hierarchical nature of XML naturally mirrors the nested object-
oriented architecture of the application (e.g., a Diagram contains Sweeps, which contain
Conditions). This allows the configuration file to be deserialized directly into the runtime
object graph without complex intermediate mapping. Secondly, the verbose, tag-based
syntax of XML offers superior human-readability compared to formats such as JSON or
binary configurations. This is critical for laboratory engineers who must create and
modify templates manually without a specialized editor. Finally, MATLAB provides
native support for the W3C Document Object Model (DOM) via the xmlread function,

enabling efficient, standard-compliant parsing without the need for third-party libraries.

The application utilizes a custom DOM parser to traverse this structure. The
parsing logic is divided into functional blocks that process the definition sequentially,
ensuring that dependencies—such as variable definitions—are resolved before they are

utilized by downstream components.

The logical hierarchy of these elements, illustrating the relationship between

inputs, rules, and visualization objects, is depicted in 3. Figure: XML hierarchy tree.

XML TEMPLATE STRUCTURE

CurveFitTemplate

Diagrams

<Diagram
figureNr="1">

ChipName-=
‘MOSFET'>

3. Figure: XML hierarchy tree
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To demonstrate the practical application of this schema, a minimal configuration
template designed to generate a single "Switching Energy vs. Current” diagram is

presented below:

<?xml version="1.0" encoding="UTF-8"?>
<CurveFitTemplate>
<!-- 1. General Meta-Data -->
<Info>
<Name>Minimal MOSFET Template</Name>
<Version>1.0</Version>

<Description>Example Minimal configuration for Thesis
Documentation</Description>

</Info>
<!-- 2. User Inputs: Variables defining the operating point -->
<UserInputs>

<Input name="Inom" column="Ic [A]" />

<Input name="Imax" column="Ic [A]" />

<Input name="Vcc" column="Vcc [V]"/>

<Input name="TvjMax" column="T [°C]"/>
<Input name="Rgon" column="G1_Rgon [Ohm]"/>
</UserInputs>

<!-- 3., Scaling Rules: Normalization logic (e.g., Joules to mJ) -->
<ScalingRules>
<Scale newName="Eon [mJ]" oldName="Eon links [J]" scale="1000"
offset="0" />
</ScalingRules>

<!-- 4. System Selection: Logic to filter specific measurement rows -->
<SystemSelectionRules>
<SystemCriterium ChipName="MOSFET" Criterium="Eon [mJ]">

<Condition key="T [°C]" value="$TvjMax" />

<Condition key="Ic [A]" value="$Inom" />

<Condition key="Vcc [V]" value="¢$vVcc" />

<Condition key="valid" value="1" />
</SystemCriterium>

</SystemSelectionRules>

<!-- 5. Diagram Definition: Visualization logic -->
<Diagrams>
<Diagram figureNr="1">
<XAxis>Ic [A]</XAxis>
<YAxis>Eon [mJ]</YAxis>
<XLimits min="0" max="$Imax" />

<!-- Global filters for this diagram -->

<Conditions>
<Condition key="Vcc [V]" value="¢vcc" />
<Condition key="valid" value="1" />
</Conditions>
<!-- Curve families to generate -->
<Sweeps>

<SweepParameter>T [°C]</SweepParameter>
<SweepParameter>Rgon [Ohm]</SweepParameter>
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<l-- Curve 1: Nominal Gate Resistor at Max Temp -->
<SweepCombination>
<Value>$TvjMax</Value>
<Value>$Rgon</Value>
</SweepCombination>
</Sweeps>
</Diagram>
</Diagrams>
</CurveFitTemplate>

4.1.1 User Inputs and Variable Substitution

The root of the configuration is the <Userlnputs> section. This block defines
global variables such as nominal current (Inom), bus voltage (Vcc), or junction temperature
(Tvj) which establish the specific operating conditions of the dataset. Upon loading a
template, the parser identifies these tags and dynamically generates an interactive Ul

table, prompting the user for numerical entry.

Internally, the Template Controller utilizes a containers.Map data structure to
store these key-value pairs. This map serves as a lookup table for variable substitution.
During the parsing of subsequent nodes, the algorithm inspects every attribute string for
the $ delimiter. If a string such as value="$lnom" is encountered, the system queries the
map and injects the corresponding numerical value into the object property. This
mechanism ensures that a generic template can be reused across different device ratings
simply by updating the input table.

4.1.2 Scaling Rules

The <ScalingRules> block defines the data normalization logic. Each rule is
encapsulated in a <Scale> tag containing four mandatory attributes: the target column
name (oldName), the desired variable name (newName), a multiplicative factor (scale),
and an additive offset (offset). This structure allows for the mapping of raw data columns
(e.g., "t_fall [s]") to standardized internal names (e.g., "tf [ns]™) required by the plotting

engine.

4.1.3 System Selection Logic

The <SystemSelectionRules> section enables the automated segmentation of the
dataset. The schema employs a nested structure where a parent <SystemCriterium> tag
contains multiple child <Condition> tags. The logic implies an AND operation between

conditions within a criterium. The parser reads these definitions and passes them to the
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SystemFilterNode, where they are converted into logical vector masks that filter the data
table.

4.1.4 Diagram Definitions

The visualization logic is defined in the <Diagrams> section. This part of the
schema mirrors the hierarchical structure of the Diagram class. A <Diagram> element
defines the axes and limits, while nested <Sweeps> and <SweepCombination> elements
define the parameter sets required to generate specific curve families. The parser iterates
through these nested elements to instantiate the necessary objects, automatically

assigning the correct X and Y data sources and filtering conditions.

Implementation of Unit Scaling

The practical implementation of data normalization is encapsulated within the
ScaleNode class but is controlled via the main application workflow. The core logic

applies a linear transformation equation (y = m - x + ¢ ) to the data vectors.

To ensure the stability of the tool in a production laboratory environment, the
scaling algorithm was implemented with a strong focus on fault tolerance. Experimental
datasets frequently vary; a specific column defined in a standard template might be
missing from a specific measurement file due to channel configuration changes on the

oscilloscope. To handle this, the scaling iteration loop is wrapped in a try-catch block.

When the addScaledData method executes, it attempts to locate the oldName
column in the source table. If the column is missing, the system catches the exception,
logs a specific warning to the console, and gracefully skips that individual rule without
interrupting the execution of the remaining scaling operations. This design decision
ensures that the analysis pipeline remains robust, allowing engineers to visualize the

available data even if the dataset is partially incomplete.

Extended Curve Fitting Engine

The mathematical core of the application resides within the Curve class. To enable
the analysis of non-linear semiconductor characteristics without abandoning the
numerical stability of the Tikhonov-regularized linear solver, the fitting engine was

fundamentally refactored. The extended implementation introduces a "Transform-Solve-
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Inverse" architectural pattern, encapsulated primarily within the fitHelper and
regularizedPolyFitWeighted methods.

The process begins in the fitHelper method, which acts as a pre-processing
pipeline. Before any optimization occurs, the engine evaluates the state of the LogX and
LogY boolean properties. A critical step in this phase is data validation. Since the natural
logarithm function is undefined for non-positive values, the method applies a logical filter
to the raw data vectors. Data points where x < 0ory < 0 (depending on the active
axes) are automatically excluded from the fitting set. This defensive programming
ensures that the solver never encounters domain errors, which is particularly important
when handling raw measurement data that may contain zero-crossings due to sensor noise

or offset calibration issues.

Once validated, the data is projected into the target feature space. If a logarithmic
mode is active, the log transformation is applied to the respective vectors. The efficacy
of this transformation is illustrated in 4. Figure. The raw measurement data, exhibiting a
non-linear power-law decay (Left), is mapped to a linear trajectory within the logarithmic
feature space (Right).
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4. Figure: Left: Raw Data (Left) vs Transformed Data (Right)

The solver constructs the Tikhonov regularization matrix (H) and the linear
constraint vectors within this transformed, normalized coordinate system. The
optimization problem is solved using the quadprog function from the MATLAB
Optimization Toolbox [20] (Interior-Point-Convex algorithm [4]) to determine the
optimal polynomial coefficients. Finally, the resulting curve is mapped back to the
original physical domain via the inverse transformation. For logarithmic axes, the exp()

function is applied to the fitted vector. This architecture ensures that the resulting curve
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strictly adheres to the physical trend such as a power law while maintaining the
smoothness properties enforced by the regularization term.

Hyperparameter Autotuning Algorithm

To automate the selection of the optimal mathematical model, the autoTuneFit
method was implemented within the Curve class. This method treats the fitting
configuration as a discrete optimization problem where the objective is to minimize the
Modified Akaike Information Criterion (AICc) derived in Chapter 3. Given the high
dimensionality of the search space comprising coordinate systems, polynomial orders,
and multiple physical constraints an exhaustive search would be computationally
prohibitive for real-time interaction. Consequently, the implementation utilizes a

deterministic Greedy Forward Selection strategy, executed in three sequential stages.

AutoTuning Logic Flowchart: autoTuneFit(obj)

I Initialize: Store original config, reset constraints to ‘None', minScore = Ml

| Data Pre-check: Check for empty data and positive values for Log possibility I

Data OK

[Phase 1: Tune Log Scaling

Set baseline PolyOrder = 2

.oop: Valid LogX

{Subp! Calculate Standard AlCc Score,

I LogY combos computeRSS(obj):
. Filter data based on Luggb”
eoelﬁcoenis

I Subprocess: Calculate | CheckLogScore Yes [ Update minScore &
_Standard AlCc Score | Score < minScore? bestConfig.Log settings
No

lculalc SS in linear space

stonn iediwonbackbhmaspace

1
i
i
i
|
1
1
i
E
|Commit best Log settings to obj '[- !
T i
i
i
i
i
|
i
1
1
1
i
1
i

Commit best PolyOrder to obj

CheckPolyScore Update minScore &
Score < vacore? bestConfig,PolyOrder

No

1
]
1
'
1
1
|
1
1
|
1
1
|
1
|
|
|
1
]
1
1
1
]
]

1
Phase 3: Tune constréirns (Greedy Forward Selection)

gamma = 10.0

Init local best score = minScore,

Outer Loop:
Constraint Types
Sign, Monotonicity, Curvature

: :.‘; --------- Calculate Final Score:
;—b AlCc Score - ( 5

m in butConﬁg

_______________

Inner Loop: = —
NextTYPe_— 1 ons for current T Next Option y set
e.g., None, Rising, Falling option on obj

Apply final bestConfig to obj

Process Becison™, | _ Subproc o-s;"' Terminator Phase Group
(Rectangle) (Diamond Dashe _W\glg (Rounded) ) |(Cotores 8o

5. Figure: Flowchart of the Autotuning Logic

4.1.5 Step 1: Coordinate System Selection

The algorithm first seeks to identify the coordinate space that best linearizes the
data. To isolate the effect of the coordinate transformation from model complexity, the

polynomial order is temporarily fixed to a low baseline (Order = 2). The algorithm iterates
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through the four permutation states of the LogX and LogY properties (Linear, Semi-
LogX, Semi-LogY, and Log-Log). For each permutation, the Residual Sum of Squares
(RSS) is computed in the linear back-transformed space to ensure comparable error
metrics. The configuration yielding the lowest initial AICc score is committed as the

foundation for the subsequent steps.

4.1.6 Step 2: Complexity Optimization

With the optimal coordinate system locked, the algorithm proceeds to optimize
the model complexity. The logic iterates through polynomial orders ranging from 0
(constant) to 5. During this loop, the AICc score is calculated using the specific Alpha
penalty factor (a=10) implemented in the computeAICc helper function. This high
penalty factor imposes a strict barrier against overfitting; a higher-order polynomial is
selected only if it provides a reduction in residual error substantial enough to outweigh
the complexity cost. This step effectively locates the "knee point" of the error curve,

identifying the simplest polynomial that adequately captures the data trend.

4.1.7 Step 3: Constraint Selection (Greedy Approach)

The final stage refines the model by applying physical constraints. The
implementation utilizes a greedy search pattern to test constraints in a fixed hierarchy:

first Sign, then Monotonicity, and finally Curvature.

For each constraint type, the algorithm iteratively tests all available options (e.qg.,

for Monotonicity: 'None', 'Rising’, 'Falling'). A specialized scoring logic is applied here:
Final Score = AlCy,0q — (Y X Nconstraints)

The autoTuneFit method explicitly defines the Gamma reward factor (y = 10). If
applying a constraint (e.g., forcing the curve to be monotonic) results in a score lower
than the current best score, the constraint is accepted and committed to the configuration.
This mathematical bias ensures that the algorithm prioritizes physically plausible models.
For example, even if a noisy dataset suggests a slight local oscillation, the reward factor
will drive the selection toward a monotonic curve if the increase in residual error is
minimal. This logic effectively replicates the decision-making process of an expert

engineer who prioritizes physical consistency over absolute fitting precision.
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5 Evaluation

This chapter presents the comprehensive evaluation of the developed Data-Sheet
Analysis Tool. The primary objective of this phase was to validate the functional
correctness of the template-driven architecture and to quantify the improvements in
analytical accuracy and workflow efficiency compared to the legacy manual approach.
The evaluation process was structured to isolate and verify each stage of the extended
pipeline, from initial data parsing to the final generation of mathematically optimized

diagrams.

Test Environment and Methodology

The software validation was conducted using MATLAB R2022b on standard
laboratory workstations. To ensure the results reflected real-world engineering
challenges, the evaluation utilized experimental datasets provided by Infineon
Technologies. These datasets consisted of characterization measurements for discrete
IGBT and MOSFET power devices, generated during standard double-pulse testing

procedures.

These specific datasets were selected because they represent the "worst-case™
scenarios for automated analysis. They are characterized by high dynamic ranges, with
currents spanning from milliampere-level leakage measurements to transient short-circuit

currents exceeding hundreds of Amperes. Furthermore, the data exhibits significant

stochastic noise, particularly in derivative-based parameters such as current slope (d—;) and

voltage slope (%), which are derived from high-speed oscilloscope acquisitions. The

validation methodology focused on three key performance indicators: the correct
propagation of XML configuration variables, the robustness of the logarithmic fitting
engine when applied to non-linear physical behaviors, and the ability of the Autotuning

algorithm to converge on physically plausible models without human intervention.

Verification of Automation Framework

The initial phase of testing focused on the verification of the XML Templating
System. A comprehensive test template, MOSFET_Template.xml, was developed to

define a complete characterization session. This template included definitions for user-
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defined global variables, scaling rules for twenty distinct measurement channels, and the

structural definitions for twelve unique diagrams.

5.1.1 Template Loading and Variable Substitution

The application’s ability to parse and instantiate the analysis context was tested by
loading the XML template. Upon file selection, the Template Controller successfully
identified the <UserInputs> section and dynamically generated the interactive parameter
table within the user interface. Values entered by the operator such as the nominal current
(Ihom), bus voltage (Vcc), and maximum junction temperature (Tvjmax) Were correctly

captured by the internal map container.

The propagation of these variables was verified by examining the downstream
filtering logic. The SystemFilterNode correctly substituted the user-defined voltage
thresholds (e.g., $Vgsoff) into the logical mask definitions. This allowed the software to
automatically segregate the raw dataset, distinguishing between high-side and low-side
switching events based on the dynamic criteria defined in the template, a task that

previously required manual row selection in external spreadsheet software.

5.1.2 Automated Unit Scaling

The robustness of the data normalization engine was verified through the
ScaleNode output. The raw measurement files contained data in base Sl units (Joules for
energy, Seconds for time). The template defined transformation rules to convert these into
standard engineering units (milliJoules and nanoseconds). Inspection of the processed
data table confirmed that the linear transformations were applied correctly to all target

columns.

Furthermore, the fault-tolerance of the scaling logic was validated by intentionally
loading a raw dataset that was missing specific columns defined in the template. As
designed, the try-catch mechanism within the scaling loop successfully trapped the
missing column exception, logged a warning to the console, and proceeded to process the
remaining valid columns without terminating the application. This confirmed that the
architectural requirement for stability in the presence of inconsistent experimental data

was met.
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6. Figure: Unit Scaling Tab showing automatic conversion of units

Evaluation of Analytical Capabilities

A critical limitation of the previous linear solver was its inability to robustly model
the non-linear dependencies characteristic of power semiconductor switching behaviors.

To evaluate the effectiveness of the extended mathematical engine, a comparative
analysis was performed using the rate of current rise (Z—i) as a function of the turn-on gate

resistance (Rgon). This relationship represents a fundamental trade-off in power
electronics: increasing the gate resistance slows down the switching transient, reducing
electromagnetic interference but increasing switching losses. Physically, this manifests
as an inverse or power-law decay curve which exhibits sharp curvature at low resistance

values and an asymptotic approach to zero at high resistance values.

When fitted using the legacy standard polynomial approach in a linear coordinate
system, the model frequently exhibited unphysical artifacts. To minimize the residual sum
of squares across the high-dynamic-range axis, high-order polynomials would oscillate

significantly, often dipping below zero in the asymptotic region to accommodate the steep
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gradient at the origin. These oscillations resulted in physically impossible negative values

for the current slope.

In contrast, the extended engine was tested using the Log-Log transformation
mode (x' =Inx, y' =Iny). As illustrated in the resulting analysis, the solver
successfully linearized the data before optimization. The fit function generated by the
tool, expressed as y(x) = 12.7 X exp(—0.3161In(x) — 0.08111In(x)?), confirms that
the "Transform-Solve-Inverse™ architecture functioned correctly. The resulting curve
adhered strictly to the physical trend, passing smoothly through the measurement points
without oscillation and maintaining a strictly positive trajectory throughout the domain.
This test confirmed that the integration of coordinate transformations allows the

Tikhonov-regularized solver to model complex power-law behaviors with high fidelity.

(4] MATLAB App - u] X
File Help

Data Template Unit Scaling System Selection Table Data Diagrams Qverview

Diagrams
Dependency XLimit Conditions Sweep FigureNr
Erec [mJ] vs -Vge [V] 0.5 Ve [V] =600, Ic [A] =75, T[*C] = 175, valid ... |Rgon [Ohm], Rgoff [Ohm], tdead [ns] = 2.7, 0.. 5"
Erec [mJ] vs tdead [ns] (100, 1000  |lc [A] = 75, Vcc [V] = 600, Rgon [Ohm] = 6.2, |T [°C] = 125, 179 9
didt [kA/us] vs Rgon [O... |6.2, 62 Ic [A] = 79, tdead [ns] = 1000, Vcc [V] =600,... |T[*C] =175 13
dvdt [kv/us] vs Rgoff[... |0.51, 5.1 Ic [A] = 75, Vcc [V] = 600, Rgon [Ohm] = 6.2, [T [*C] =175

= 14
Next Diagram Modify Diagram Add Diagram Remove Diagram

Selected Curve {didt [kA/us] vs Rgon [Ohm] @ T [°C] = 175 v|
A 9
Fit . o=
g
Sign None v ‘
7
Polynom Order IMonotonicity Falling v ‘
6
Smoothness Order Curvature Convex v ‘ -
E
5
Smoothness V] Anchor Points i
S4
[#]Log x =
3
“ILogy
2
1
Function 0
0 10 20 30 40 50 80 70
Rgon [Ohm]

7. Figure: "'didt vs Rgon' curve after auto-tuning
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Autotuning Performance and Workflow Analysis

The Hyperparameter Autotuning algorithm was evaluated to determine its ability

to replicate the decision-making process of an expert engineer. The evaluation utilized

the same % dataset to verify the Greedy Forward Selection logic.

The execution log of the algorithm revealed the sequential optimization process.
In the first stage, the algorithm compared the Modified AICc scores across linear and
logarithmic coordinate systems, correctly identifying that the Log-Log space provided
the most significant reduction in linearization error. In the second stage, the algorithm
evaluated polynomial complexity. Despite the potential for a higher-order polynomial to
reduce the residual error marginally further, the Alpha penalty factor (a=10) imposed by
the Modified AICc metric heavily penalized complexity. Consequently, the algorithm
converged on a stable 2nd-order polynomial, effectively identifying the mathematical
"knee point” where additional complexity no longer yielded statistically significant

accuracy gains.

In the final stage, the constraint selection logic was verified. The greedy search
iteratively tested physical constraints. The algorithm correctly identified that applying a
"Monotonicity: Falling™" constraint and a "Curvature: Convex" constraint improved the
overall optimization score. This improvement was driven by the Gamma reward factor
(y=10), which incentivized the selection of a physically descriptive model over a purely
unconstrained mathematical fit. The final output was a smooth, monotonic, and convex
curve that aligned perfectly with theoretical expectations for a gate resistance

dependency.

To quantify the efficiency gains, a workflow timing analysis was conducted. In
the manual workflow, generating such a diagram required the user to visually inspect the
data, hypothesize the correct axis transformation, and iteratively adjust the polynomial
order and smoothing factors to remove oscillations. This process typically required
several minutes of interaction per diagram. The automated workflow shifted this burden
to computational complexity. Although the autotuning algorithm performed
approximately 70 to 80 quadratic programming solves to explore the search space, the
entire optimization process completed in less than two seconds on standard laboratory

hardware. This represents a time reduction of approximately 98% for the curve-fitting
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phase, while simultaneously ensuring that the generated models are mathematically
consistent and reproducible across different analysis sessions.

Below is a snippet of the MATLAB Console Output showing the Autotuning
progress step by step:

--- Starting Hyperparameter AutoTuning ---

Data Pre-check:
- X-axis data is all positive. LogX will be tested.
- Y-axis data is all positive. LogY will be tested.

--- Step 1: Tuning Log Scaling (using baseline PolyOrder=2) ---
Testing LogX=0, LogY=0: RSS=34, n=39, k=3 -> AICc Score = 55.3601
*** NEW BEST FOUND -> Score: 55.3601 ***
Testing LogX=0, LogY=1: RSS=7.78, n=39, k=3 -> AICc Score = -2.2050
*** NEW BEST FOUND -> Score: -2.2050 ***

Testing LogX=1, LogY=0: RSS=0.189, n=39, k=3 -> AICc Score = -147.1032
*** NEW BEST FOUND -> Score: -147.1032 ***
Testing LogX=1, LogY=1: RSS=0.178, n=39, k=3 -> AICc Score = -149.5366

*** NEW BEST FOUND -> Score: -149.5366 ***
==> Best Log Config Found: LogX=1, LogY=1

--- Step 2: Tuning Polynomial Order ---
Testing PolyOrder=0: RSS=326, n=39, k=1 -> AICc Score = 102.9456
Testing PolyOrder=1: RSS=4.23, n=39, k=2 -> AICc Score = -46.3134

Testing PolyOrder=2: RSS=0.178, n=39, k=3 -> AICc Score = -149.5366
Testing PolyOrder=3: RSS=0.178, n=39, k=4 -> AICc Score = -128.9455
Testing PolyOrder=4: RSS=0.218, n=39, k=5 -> AICc Score = -100.5093
Testing PolyOrder=5: RSS=0.184, n=39, k=6 -> AICc Score = -86.1928
==> Best Polynomial Order Found: 2
--- Step 3: Tuning Constraints (Greedy Forward Selection) ---
-> Evaluating constraint type: Sign
Testing Sign='None' : AICc=-149.5366, Reward=0.0 -> Final Score = -

149.5366

Testing Sign='Positive': AICc=-115.4613, Reward=10.0 -> Final Score =
125.4613

Testing Sign='Negative': AICc=152.6612, Reward=10.0 -> Final Score
142.6612

-> No improvement found. Keeping Sign = 'None’.
-> Evaluating constraint type: Monotonicity
Testing Monotonicity="'None' : AICc=-149.5366, Reward=0.0 -> Final
Score = -149.5366
Testing Monotonicity='Rising' : AICc=190.3432, Reward=10.0 -> Final

Score = 180.3432
Testing Monotonicity='Falling': AICc=-149.5366, Reward=10.0 -> Final
Score = -159.5366
*** NEW BEST FOUND -> Committing Monotonicity = 'Falling', New Best
Score: -159.5366 ***
-> Evaluating constraint type: Curvature

Testing Curvature='None' : AICc=-149.5366, Reward=10.0 -> Final Score
= -159.5366

Testing Curvature='Convex' : AICc=-149.5366, Reward=20.0 -> Final Score
= -169.5366

Testing Curvature='Concave': AICc=143.5232, Reward=20.0 -> Final Score
= 123.5232
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*** NEW BEST FOUND -> Committing Curvature = 'Convex', New Best Score:
-169.5366 ***

--- AutoTuning Complete. Applying Final Configuration ---
Final Best Score: -169.5366
LogX: 1
LogY: 1
PolyOrder: 2
Sign: 'None’
Monotonicity: ‘'Falling'
Curvature: 'Convex'

To provide a comprehensive overview of the validation results, the performance
metrics observed during the evaluation phase are synthesized in 1. Table: Comparative
Evaluation of Performance Metrics. This comparative analysis underscores the
substantial advancements in workflow efficiency and analytical fidelity achieved by the

automated framework relative to the legacy manual approach.

Metric Legacy Manual | Automated Outcome
Workflow Framework

Processing Required Completed in less | ~98% reduction in

Latency approximately 3-5 | than two seconds the time required
minutes per via autonomous for curve fitting
diagram due to optimization and diagram
iterative manual algorithms. generation.
adjustment.

Reproducibility Characterized by Deterministic; Elimination of
subjectivity; results | governed by the human variability,

were dependent on | Modified Akaike ensuring consistent
operator intuition Information results across
and trial-and-error. | Criterion (AlCmod). | different analysis

sessions.

Analytical Fidelity | Prone to numerical | Strictly adhered to | Robust modeling of

instability (Runge’s | physical constraints | non-linear

phenomenon) and | (e.g., semiconductor

unphysical Monotonicity, behaviors, even

negative artifacts. Positivity, with high-noise
Convexity). datasets.
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Scalability

Relied on
hardcoded logic;
required source
code modification
and recompilation

for new devices.

Driven by XML
templates; allows
for dynamic
runtime

reconfiguration.

Decoupled
architecture
enabling immediate
adaptation to novel
device topologies
without software

development.
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6 Critical Assessment

The development of the Data-Sheet Analysis Tool represented a multifaceted
engineering challenge that required the synthesis of software architecture, mathematical
modeling, and user interface design. This chapter assesses the outcomes of the project
against the initial requirements defined in Chapter 2 and discusses the specific technical

challenges encountered during the implementation and verification phases.

Assessment of Completed Work

The primary objectives of this thesis to generalize the analysis workflow and to
automate the mathematical modeling process have been successfully met. The
transformation of the software from a rigid, code-dependent utility into a flexible,
template-driven framework was achieved through the design and implementation of the
XML Template Controller. By decoupling the analysis logic from the compiled source
code, the system now satisfies the requirement for scalability; laboratory engineers can
adapt the tool to novel device architectures and measurement protocols solely by
modifying external configuration files, without requiring intervention from software

developers.

From an analytical perspective, the integration of the coordinate transformation
engine has resolved the tool's previous inability to robustly model non-linear physical
behaviors. The Tikhonov-regularized solver, originally limited to linear polynomial
fitting, now operates effectively across logarithmic and semi-logarithmic domains. This
extension ensures that critical semiconductor parameters, such as power-law switching
energy dependencies and exponential leakage currents, are modeled with high fidelity.
Furthermore, the development of the Hyperparameter Autotuning algorithm has
successfully removed the subjectivity from the curve-fitting process. By utilizing the
Modified Akaike Information Criterion, the software consistently selects models that
balance statistical accuracy with physical plausibility, thereby ensuring reproducibility
across different analysis sessions and reducing the manual effort required to generate

publication-ready diagrams.
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Challenges Encountered

A significant challenge during the development phase was the calibration of the
Autotuning Algorithm. While the Akaike Information Criterion is a standard statistical
measure for model selection, the concept of "visual smoothness” required for datasheets
Is a subjective engineering preference that is difficult to quantify mathematically. Finding
the optimal balance for the empirical Alpha (complexity penalty) and Gamma (constraint
reward) factors required extensive testing with real-world datasets. Initial experiments
revealed that standard AlCc penalties were insufficient for high-noise oscilloscope data,
often leading the algorithm to select high-order polynomials that modeled the noise rather
than the signal. Conversely, an excessively high Gamma factor occasionally forced the
selection of overly simplistic models that ignored genuine trend inflections. A robust set
of default factors was eventually determined empirically, ensuring the algorithm behaves

consistently across the typical dynamic ranges found in power electronics measurements.

In addition to algorithmic tuning, the extension of the reactive architecture
introduced complex state-management issues. The underlying reactive graph relies on
persistent listeners to propagate data changes. Dynamically reconfiguring this graph
destroying old diagram objects and instantiating new ones when a template is loaded
created synchronization challenges. Early iterations of the software suffered from
memory leaks and execution errors caused by "zombie" listeners attempting to update
deleted figures. This was resolved by implementing a rigorous cleanup protocol within
the base node classes, ensuring that all event listeners are explicitly detached and object

handles are cleared before the state is reset.

Future Development Options

While the developed tool successfully streamlines the interactive analysis
workflow, the evaluation identified a clear pathway for further automation through batch
processing. Currently, the Autotuning function must be triggered manually for each curve
or diagram to allow the user to verify the result. A logical future enhancement would be
to integrate autotuning instructions directly into the XML schema. By introducing a
specific attribute—for example, a flag indicating that a specific curve should be auto-
tuned upon loading—the software could iterate through the entire session immediately

after the template is applied. This would enable the generation of a complete,
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mathematically optimized report containing dozens of diagrams with zero additional user
interaction, further accelerating the characterization cycle for standardized products.
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7 Conclusion

The analysis of experimental measurement data constitutes a cornerstone of power
semiconductor development. As device complexity increases to meet the demands of
modern energy efficiency standards, the reliance on manual data processing workflows
has emerged as a significant bottleneck, introducing latency and potential inconsistencies
into the datasheet generation process. The necessity to characterize devices under a wide
array of operating conditions generates vast datasets that require meticulous filtering,

scaling, and mathematical modeling to extract meaningful physical parameters.

This thesis presented the design and implementation of an advanced Data-Sheet
Analysis Tool aimed at resolving these challenges through the principles of automation
and generalization. By extending an existing MATLAB App Designer framework, the
project introduced a robust XML-based templating system. This architectural innovation
allows laboratory engineers to externalize the logic for data filtering, unit scaling, and
diagram definition, effectively decoupling the analysis configuration from the application
source code. Consequently, the software has been transformed from a rigid, device-
specific utility into a flexible platform adaptable to any semiconductor technology

without requiring code modification.

Furthermore, the analytical capabilities of the tool were significantly expanded to
address the specific physical behaviors of power devices. The implementation of a
Tikhonov-regularized solver capable of coordinate transformations ensures that non-
linear characteristics—such as exponential leakage currents and power-law switching
energy dependencies—are modeled with high fidelity and numerical stability. The
introduction of the Hyperparameter Autotuning algorithm, driven by a modified Akaike
Information Criterion with specific penalties for complexity and rewards for physical
constraints, guarantees that the generated curves are not only mathematically optimal but
also adhere to the physical laws of the system.

In conclusion, the developed tool successfully transforms a fragmented, manual
workflow into a streamlined, reproducible, and highly efficient process. It empowers
laboratory engineers at Infineon Technologies to focus on the interpretation of device
physics rather than the mechanics of data manipulation, thereby significantly accelerating
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the characterization and development cycle of next-generation power electronic

components.
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Annex

I. Declaration on the Use of Generative Artificial Intelligence

[0 1 have not used any generative Al tools.

I have used generative Al tools. | have verified the content generated by Al, ensured
the accuracy of the outputs, and properly indicated each instance of use in the table

below.
) Affected Sections ) )
Name of Generative Al (chapt 0 Estimated Proportion of
chapter, page number,
Usage type Tool(s) Use (per usage type)
reference)
40% of the text was
Literature Review Chatgpt 4 Chapters1to 7 checked/improved

Brief Summary
of the Prompt

Language proofreading and style improvement.

Program Code

Generation

Brief Summary

of the Prompt

Generating New Ideas or

Solution Proposals

Brief Summary

of the Prompt

Creating an Outline (text

structure, bullet points)

Brief Summary

of the Prompt

Creating Text Blocks

Brief Summary

of the Prompt

Generating Images for

Illustrative Purposes

Brief Summary

of the Prompt
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Data Visualization,
Generating Charts Based

on Data Points

Brief Summary

of the Prompt

Preparing a Presentation

Brief Summary

of the Prompt

Other (please specify)

Brief Summary

of the Prompt

Proofreading and finding errors

Aggregated Percentage Value (for the core part of the task) 0%

Brief Textual Justification of the Aggregated Value:

I performed the professional content, research, measurements, and software development independently. I used

generative Al exclusively to check the grammar of the English text written by myself and to improve the scientific

style and vocabulary. The Al did not add any new professional ideas or results to the thesis.

Il . Attachements

The following digital artifacts are attached to this thesis to demonstrate the

functionality of the developed tool. all the attachments can be found in the Digital

repository linked at 4:

1. DataSheetAnalysisTool.exe: The standalone compiled executable of the

developed software. This application runs the full analysis pipeline

demonstrated in the evaluation chapter.

2. MOSFET_Template.xml: The XML configuration file used for the

primary evaluation cases (Switching energy, Di/Dt).

3. IGBT_Template.xml: An additional configuration template demonstrating

the adaptability of the system to different device technologies.
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4. Digital Repository': Snippets of code, Functions and methods developed
for this thesis. https://github.com/abdel-ahbane/DataSheet-Analysis-

Automation-Tool

" The complete source code for the application is proprietary to Infineon Technologies and is not
included in the public repository. The core algorithms developed specifically for this thesis (Autotuning
and Logarithmic Logic) are documented in the annexed Digital repository.
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