

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Barnabás Suciu

EXPLORING EFFICIENT NEURAL

ARCHITECTURES FOR TEXT-TO-

SPEECH SYNTHESIS

SUPERVISOR

Dr. Mohammed Salah Al-Radhi

BUDAPEST, 2021

Contents
Summary ... 4

Összefoglaló .. 5

1 Introduction ... 6

1.1 History of text-to-speech .. 7

1.2 Related work .. 8

2 Vocoders ... 11

2.1 WORLD vocoder ... 11

2.2 Continuous vocoder ... 12

3 Deep Neural Networks .. 15

3.1 Feed-forward deep neural networks ... 15

3.2 Recurrent neural networks ... 16

3.2.1 Long short-term memory .. 17

3.2.2 Bidirectional long short-term memory .. 18

3.2.3 Gated recurrent unit .. 19

4 Methodology .. 21

4.1 Overview of Merlin .. 21

4.2 Database ... 21

4.3 Experimental conditions .. 22

5 Experimental evaluation... 26

5.1 Experimental goals ... 26

5.2 Observations during experimentation .. 26

5.3 Developed neural architectures .. 27

5.4 Objective evaluation .. 28

5.4.1 Logarithmic spectral distance ... 28

5.4.2 Spectrograms ... 29

5.4.3 Built-in metrics ... 32

5.5 Subjective evaluation ... 33

6 Challenges, conclusions, and future research ... 35

Publications... 36

Acknowledgements... 37

References ... 38

STUDENT DECLARATION

I, Suciu Barnabás, the undersigned, hereby declare that the present BSc thesis work has been

prepared by myself and without any unauthorized help or assistance. Only the specified sources

(references, tools, etc.) were used. All parts taken from other sources word by word, or after

rephrasing but with identical meaning, were unambiguously identified with explicit reference to the

sources utilized.

I authorize the Faculty of Electrical Engineering and Informatics of the Budapest University of

Technology and Economics to publish the principal data of the thesis work (author's name, title,

abstracts in English and in a second language, year of preparation, supervisor's name, etc.) in a

searchable, public, electronic and online database and to publish the full text of the thesis work on

the internal network of the university (this may include access by authenticated outside users). I

declare that the submitted hardcopy of the thesis work and its electronic version are identical.

Full text of thesis works classified upon the decision of the Dean will be published after a period of

three years.

Budapest, 14 May 2021

 ...…………………………………………….

 Suciu Barnabás

Summary

The current thesis focuses on the exploration of efficient neural architectures for vocoder-

based text-to-speech (TTS) systems. As opposed to end-to-end solutions, the use of a vocoder and

separate steps for creating a duration and an acoustic model with which the speech is synthesized, a

much shorter training time frame can be achieved, the size requirements of the training dataset are

also quite modest, and inference can be solved in real-time. Furthermore, I explore the recently

proposed statistical parametric continuous vocoder in a sequence-to-sequence recurrent neural

network based on TTS. Experimentation is conducted with the Merlin open-source text-to-speech

toolkit. The WORLD vocoder was chosen for comparison with the optimized vocoder. The testing

includes both traditional sequential neural architectures and recurrent models, such as LSTM (long

short-term memory) and GRU (gated recurrent unit). I use objective evaluation as well as subjective

metrics to evaluate and compare my results. Experimental results have shown that the Seq2Seq model

has higher naturalness than the one based on the WORLD framework while being simpler in terms

of the number of excitation parameters.

 5

Összefoglaló

Jelen dolgozat fókusza a hatékony neurális háló architektúrákkal történő kísérletezés vokóder

alapú szövegfelolvasó (text-to-speech, TTS) rendszerekkel kapcsolatban. End-to-end megoldásokkal

ellentétben, a vokóder használata, valamint a szintézis felbontása külön akusztikus és időtartam-

modellek segítségével lehetővé teszi, hogy a tanítási időtartam lerövidüljön, a tanító adatbázis méretét

nagyban lecsökkentsük, valamint a végső, szintézis lépés kivitelezhető lesz valós időben. Továbbá

megvizsgáljuk a nemrég kifejlesztett statisztikai parametrikus folytonos idejű vokóder lehetőségeit

egy szekvencia-szekvencia mély neurális architektúrával. A tesztelés során a Merlin nyílt forráskódú

TTS eszközt használjuk. A folytonos vokóderrel történő összehasonlítás alapjául a WORLD vokódert

választottuk, melyet alapértelmezetten tartalmaz a Merlin rendszer. A tesztelés során mind

hagyományos előrecsatolt (feed-forward) mély neurális architektúrákkal, mind visszacsatolt

(recurrent) hálózatokkal foglalkozunk, úgymint LSTM (hosszú rövid-távú memória) és GRU (gated

recurrent unit). Objektív és szubjektív metrikákat is alkalmazunk az eredmények kiértékelésére. A

kísérletek eredményei megmutatták, hogy a szekvencia-szekvencia modellünknek jobb

természetessége van, mint a WORLD vokóderen alapulónak, valamint paraméterek tekintetében is

kisebb komplexitást értünk el.

 6

1 Introduction

Text to speech (TTS for short) or speech synthesis refers to the transformation of written text

to an audible speech waveform. This technology is similar to natural language processing, except that

the goal is not to understand speech, but to generate it. Two of the main evaluation points for any

synthesizer are naturalness and intelligibility, with solutions often trying to maximize both. Although

most of the energy in speech is located in the lower frequencies, the human ears are sensitive to the

high frequency components, meaning an ideal text-to-speech system has to accurately model both

short-and long-term variations of the speech waveform.

The applications of TTS technology are numerous. One of the most notable areas is assistive

technology, enabling people with sight impairment and dyslexia to interpret written text more

effectively, as well as helping people with speech impairment vocalize their thoughts. Widespread

availability, ease of use and real-time synthesis are often crucial in applications like this. Another

area where speech synthesis sees frequent use is entertainment, mostly in video games and movies,

as well as content creation on video hosting and streaming sites. In education it is often used as a

method for teaching second languages, allowing applications to circumvent having to rely on

prerecorded segments of text, enabling a more personalized experience at a lower cost.

State-of-the-art text-to-speech (TTS) synthesis is either based on unit selection [1] or

statistical parametric methods [2]. In the last two decades, particular attention has been paid to hidden

Markov model (HMM) [3], which has gained much popularity due to its advantages in flexibility,

smoothness, and small footprint.

The most recent development in speech synthesis research is the use of neural networks. These

systems mimic the way the human mind works by having the ability of finding and learning

correlations in the input data, and then using this knowledge to produce a new output. Deep neural

networks have become the most common models used in speech synthesis, achieving significant

improvements in quality [4] over previous solutions.

Although intelligibility has been steadily improving over the last decades, a constant challenge

of speech synthesis is the “robotic” and unnatural sounding voice, especially when it comes to

parametric methods. Another concern when it comes to these systems is training and inference time

frames, with the best sounding solutions (WaveNet, for example) often requiring days to train and

speech cannot be generated in real-time. Therefore, there is still room for improvement both in terms

of quality and speed of synthesis.

 7

1.1 History of text-to-speech

Ever since the late 1950s, electronic speech synthesis has been a constantly evolving field of

study. The two main types of early speech synthesizers are concatenative and formant systems. The

former relies on stringing together pre-recorded segments of speech (often called unit selection), and

allows for high naturalness, although mismatches between samples and glitches can occur. In

contrast, formant synthesis relies on generating the speech waveform itself based on parameters like

fundamental frequency and voicing. This provided the possibility of real-time synthesis with high

intelligibility, although with much less naturalness. In 1961, an IBM 704 computer was used to

synthesize speech at Bell Labs, recreating the song “Daisy Bell”. This is what gave inspiration to

Arthur C. Clarke for his artificial intelligence, HAL 9000 in his screenplay for his novel, 2001: A

Space Odyssey. In 1975, MUSA (Multichannel Speaking Automaton) was released as one of the first

stand-alone speech synthesis systems. Still in the 70’s, portable TTS systems started emerging,

mainly for educational purposes and to be used in calculators for enabling accessibility features. As

new software and signal processing techniques were developed, the quality of synthesized speech

steadily improved throughout the 80’s and 90’s. From there, the field evolved into many different

branches, for example the utilization of hidden Markov models, and, as is the focus of this paper,

deep neural networks. In deep learning, the two most prominent approaches are end-to-end models

and vocoder-based solutions. End-to-end systems utilize a large training dataset and require a large

timeframe (often days) for the learning process, as well as having long inference times. They provide

excellent results, though, as demonstrated by DeepMind’s WaveNet in 2016 [5]. The second

approach, sometimes referred to as statistical parametric speech synthesis, makes use of a vocoder

and parameter extraction to speed up the process, often at the cost of some speech quality. On Figure

1.1, the block diagram of one of the first vocoders, the VODER (Voice Operating Demonstrator) is

visualized, introduced by Homer Dudley at the New York World’s Fair in 1939. It required an

operator who controlled the selection of the noise source and operated a foot pedal to manipulate the

fundamental frequency.

 8

Figure 1.1: The VODER speech synthesizer

Since then, electronic vocoders have made great advances, with the advent of general-purpose

computers and improvements in signal processing techniques, today’s vocoders are capable of

approximating the characteristics of human speech effectively. The parameters extracted by a vocoder

often include fundamental and maximum voiced frequency, aperiodicity and spectral envelope. In

this thesis I propose an efficient architecture for a continuous vocoder-based system, which relies on

the open-source Merlin text-to-speech library.

1.2 Related work

In this section I’ll discuss a few of the existing solutions for both end-to-end synthesis as well

as statistical parametric speech synthesis systems.

Starting with end-to-end methods, one of the most notable ones is DeepMind’s WaveNet [5]

from 2016. It uses a feed-forward convolutional architecture, however, a technique called dilation

(similar to strided convolution or pooling, but unlike those, the output size stays the same) allows the

network to take into account many of the previous samples, without increasing computational

complexity like a recurrent network would. WaveNet provided excellent results in both intelligibility

and naturalness, however, the training time frame can be on the order of days, and inference is not

real-time, which is especially a problem in embedded environments, like mobile phones. It is also

important to mention that WaveNet required some preprocessing of the training data, therefore it is

not truly end-to-end.

 9

In 2017, Deep Voice [6] was proposed. It comprises 5 building blocks, each with a separate

function like fundamental frequency estimation or phoneme duration prediction, with the final block

combining results from previous ones to generate the audio waveform. Each block consists of a neural

network, and these networks are individually trained. It was an important step towards end-to-end

speech synthesis, the relatively simple neural networks at each step could be optimized separately

with relative ease. Inference was also faster than real-time, which is an important milestone,

optimization for GPU environments allowed a 400x speedup over traditional processors.

Still in the same year, researchers at Google released a paper on Tacotron [7], which uses an

attention-based sequence to sequence model for speech generation. The model includes uni-and

bidirectional GRU layers, as well as complex subnetworks for the encoder and post-processing

functions, which are made up of ReLU, GRU and convolutional layers. This system is truly end-to-

end, as it generates a speech waveform directly from text, the training input data consisting of text-

audio pairs only. It made effective use of sequence-to-sequence recurrent neural networks, providing

good quality speech compared to statistical parametric models while keeping computation cost down

thanks to frame, rather than sample-level synthesis.

In 2018, NVIDIA Corporation developed the WaveGlow [8] system, which allowed for great

parallelization on GPU-s, while being less complex to implement than previously mentioned

solutions. It makes use of a mel-spectrogram to model the distribution of audio samples, which is

then fed through the neural network to arrive at the desired distribution. The network itself is simpler

than previously mentioned examples, providing quality matching the best WaveNet implementations

at the time, while being able to produce speech at a rate of 500 kHz on a GPU, which is 25 times

faster than real-time.

The last end-to-end synthesizer I am mentioning is WaveFlow [9] from 2020, which used

dilated convolution to great effect, keeping computation cost down without sacrificing quality

compared to WaveNet. It has a small footprint, having about 15 times less parameters than

WaveGlow, as well as being able to generate high-quality audio about 40 times faster than real-time.

Its flow-based generative synthesis process uses invertible transformations to convert a simple initial

density into the complex distribution necessary for speech. The 1-D waveform is transformed into a

2-D matrix during training, then a series of 2-D convolutions are applied on this matrix.

The next major point of discussion is statistical parametric speech synthesis, which is the

focus of this thesis. These systems rely on the use of a vocoder to model the characteristics of human

vocal cords. Statistical parametric synthesis might be most simply described as generating the average

of some set of similarly sounding speech segments. This contrasts directly with the desire in unit

 10

selection to keep the natural, unmodified speech units, but using parametric models offers other

benefits [10].

Some of the most prominent vocoders are discussed in [11]. The popular STRAIGHT (Speech

Transformation and Representation using Adaptive Interpolation of Weight Spectrum) [12] vocoder

was developed to better remove the periodicity effects of the fundamental frequency (F0) on

extracting the vocal tract spectral shape. Although it succeeded in solving the “buzzy” problem often

found in earlier systems, the number of parameters for both the spectrum and aperiodicity components

is the same size as the FFT length used, which is not suitable for statistical modelling.

The Glottal vocoder (Glot) [13] proposed a method to represent the glottal pulse signals

instead of using a pulse-train excitation to represent the voiced excitation. Parameters such as energy

and harmonic-to-noise ratio (HNR) are calculated to bias the noise component of the source.

While end-to-end methods have shown that they can be the state-of the art technology when

it comes to speech synthesis, there are still problems with their widespread applicability. To achieve

good quality, training times are often on the order of days, while the database requirements are

prohibitively large for some applications. As opposed to the few hours of samples required by most

modern statistical parametric synthesis systems, the number of utterances for an end-to-end system

is often on the order of 20 thousand, meaning dozens of hours of recorded speech. Therefore, there is

an area where the improvement of the existing statistical parametric systems would prove beneficial

for applications where time and data are constrained, particularly when it comes to the widespread

use of mobile phones in the last decade. Combining neural networks with the efficiency of vocoders,

it is possible to meet these demands and expand the possible use cases of speech synthesis. In this

work I focus on the exploration of neural architectures for the improvement of statistical parametric

speech synthesis systems, with a focus on the possibilities provided by recurrent neural networks.

 11

2 Vocoders

As opposed to end-to-end TTS solutions, statistical parametric speech synthesis takes a

different approach by utilizing a vocoder to model certain aspects of the speech generation. Although

there are several different types of vocoders that use analysis/synthesis, they follow the same main

strategy. The analysis stage is used to convert the speech waveform into a set of parameters which

represent separately the vocal-folds excitation signal (sound is voiced or unvoiced) and vocal-tract

filter transfer function to filter the excitation signal (vocal-folds movements), whereas in the synthesis

stage, the entire parameter set is used to reconstruct the original speech signal. In this section, I discuss

two vocoder systems, starting with the open-source WORLD vocoder [14] included in the Merlin

TTS toolkit, then the continuous vocoder proposed in [15].

2.1 WORLD vocoder

The Merlin toolkit comes equipped with the WORLD vocoder by default, which is capable of

high-quality real-time speech synthesis. It extracts 3 parameters from the analyzed waveform:

fundamental frequency (F0), spectral envelope, and aperiodic parameters.

Fundamental frequency is defined as the inverse of the smallest period of a signal. For its

estimation in the WORLD vocoder, the DIO [16] algorithm is employed. First, the signal is low pass

filtered using different cutoff frequencies. In these filtered signals the candidates for the fundamental

frequency are calculated, then a reliability score is associated with them based on their deviation from

pure sine waves. Lastly, the candidate with the highest reliability is selected as the F0.

The spectral envelope of the waveform is estimated with CheapTrick [17]. It uses a Hanning-

windowed portion of the signal to calculate the power spectrum, from which the Cepstrum is

produced. Liftering is applied here to obtain a better estimation, which makes use of the previously

obtained F0 from the DIO algorithm.

In the third step, the aperiodic parameters are extracted from the signal. The algorithm used

for this is PLATINUM [18]. The signal is first windowed with a window length of two times the

fundamental period obtained with the DIO algorithm, then the temporal positions associated with

each vocal cord are determined using the fundamental frequency waveform and its contour.

Finally, the speech is synthesized by convolving the minimum phase response with the

extracted excitation signal, making use of fewer convolutions than other popular vocoders like

STRAIGHT, resulting in better performance with similar end results.

 12

An overview of these steps is displayed on Figure 2.1.

Figure 2.1: An overview of the three analysis steps in the WORLD vocoder system with their connections to each

other and the final synthesis step.

2.2 Continuous vocoder

 The continuous vocoder proposed at my supervisors’ laboratory [15] utilizes a continuous

fundamental frequency measurement (contF0), maximum voiced frequency (MVF), and 24-order

Mel-generalized cepstral analysis. The implementation of the vocoder is compatible with the Merlin

toolkit.

For a better understanding of what is next, the analysis and synthesis phases of continuous

vocoder are shown in Fig. 2.2.

 13

Figure 2.2: Schematic diagram of the analysis and synthesis phase using continuous vocoder.

During the analysis phase, continuous fundamental frequency (contF0) is calculated on the

input waveforms using a simple continuous pitch tracker [19]. In areas of creaky voice, and in the

event of unvoiced sounds or silences, this pitch tracker interpolates F0 based on a linear dynamic

system and Kalman smoothing. Another excitation parameter is the maximum voiced frequency

(MVF) which exploits both amplitude and phase spectra that integrated into a maximum likelihood

criterion to derive the MVF decisions [20]. Additionally, 24-order Mel-Generalized Cepstral analysis

(MGC) [21] is performed on the speech signal with alpha = 0.58 and gamma = 0. The steps of creating

the Cepstral plot of a signal are visualized on Figure 2.3, starting with the original waveform at the

top, and arriving at its Cepstrum at the last step.

 14

Figure 2.3: Cepstral analysis in four steps.

The frameshift is 5ms and the sampling frequency is 16kHz. The results are the contF0, MVF,

and MGC parameter streams. The Glottal Closure Instant (GCI) algorithm [22] is used to find the

glottal period boundaries of individual cycles in the voiced parts of the inverse filtered residual signal.

From these pitch cycles, a principal component analysis (PCA) residual is finally built which will be

used in the synthesis phase. During the synthesis phase, voiced excitation is made of PCA residuals

overlap-added pitch synchronously. This voiced excitation is lowpass filtered frame by frame at the

frequency given by the MVF parameter. In the frequencies higher than the actual value of MVF,

white noise is applied. Voiced and unvoiced excitation is combined, and the MGLSA (Mel-

Generalized Log Spectrum Approximation) filter is used to synthesize speech [23]. The continuous

vocoder has the obvious advantage of avoiding voicing decision per frame that may be considered to

reduce the perceptual degradation caused by voicing decision errors. Moreover, it uses only two one-

dimensional parameters for modeling the excitation, which is computationally feasible in the deep

neural network-based text-to-speech.

 15

3 Deep Neural Networks

3.1 Feed-forward deep neural networks

In this section, I begin exploration of the different deep neural network (DNN) architectures with

feed-forward deep neural networks (FF-DNN). The idea of neural networks stems from how the

human brain is structured, with the neurons and connections between them being responsible for a

similar function in both cases. The neural model consists of an input and output layer of neurons, and

between them there are several hidden layers. Each layer houses neurons with an activation function,

the connections between these neurons comprising the weights or parameters of the model. As data

is fed through the model, the activations produce an output based on the weighted data on their inputs,

and in the case of feed-forward networks, data only travels in one direction, from the input of the

model towards the output. A simple example of this architecture is displayed on Figure 3.1.

Figure 3.1: An illustration of a simple feed-forward deep neural architecture

The weights of this model can be trained by backpropagating the error (difference between

the expected and actual output of the model) through the network, and gradually updating the weights

throughout the training epochs to converge on a state in which the accuracy of the model is high. This

method is called stochastic gradient descent (SGD), and is one of the many types of optimizers used

in training neural networks. The types of optimizers supported by the Merlin toolkit are explained in

more detail in Chapter 5.3.

Similar to how the human mind works, inside each neuron is an activation function. This takes

the inputs of the neuron, the data weighted with the parameters of the network, sums them up, and

produces a single output based on what type of function is used. On Figure 3.2 three commonly used

activation functions can be observed.

 16

Figure 3.2: Three commonly used activation functions and their respective illustrations.

One important characteristic of these functions is that they can be nonlinear, allowing deep

neural networks to approximate complex functions between input data and output, creating the

possibility of solving difficult problems with a relatively small number of nodes.

3.2 Recurrent neural networks

While feed-forward neural networks are suited to perform many types of tasks efficiently,

they have difficulty extracting longer-term information from the input data, therefore ignoring the

sequential nature of speech in the case of spoken language processing. This problem can be solved

with the introduction of recurrent neural networks (RNN).

RNNs are a more popular and effective acoustic model architecture which can process

sequences of inputs and produce sequences of outputs. In particular, the RNN model is different from

the FF-DNN the following way: RNN operates not only on inputs (like the FF-DNN) but also on

network internal states that are updated as a function of the entire input history. In this case, the

recurrent connections are able to map and remember information in the acoustic sequence, which is

important for speech signal processing to enhance prediction outputs.

RNNs vary from feed-forward networks in their hidden layers. Every RNN hidden layer gets

inputs not only from its previous layer but also from activations of itself for previous inputs. A basic

version of this architecture is displayed in Figure 3.3, in which every node in the hidden layer is

connected to the previous activation of every node in that layer.

 17

Figure 3.3: A basic version of RNN.

This basic version of recurrent networks is included in the Merlin toolkit, simply referred to

as RNN in the configuration files.

There is an important issue with training this type of recurrent network, called the vanishing

gradient problem. As we backpropagate the error through the network and update the weights, the

recurrent connections between the nodes, more specifically the self-connections, often cause the

weight to quickly decrease as we multiply by a small value multiple times. This can be solved for

example by stopping the backpropagation early, but in the following section I discuss numerous

architectures which are often better suited for extracting sequential information.

3.2.1 Long short-term memory

As originally proposed in [23] and recently used for speech synthesis [24], long short-term

memory network (LSTM) is a class of recurrent networks composed of units with a particular

structure to cope better with the vanishing gradient problems during training and maintain potential

long-distance dependencies. This makes LSTM applicable to learn from history in order to classify,

process and predict time series data. Unlike the conventional RNN unit which overwrites its content

at each time step, LSTM has a special memory cell with self-connections in the recurrent hidden

layer to maintain its states over time, and three gating units (input, forget, and output gates) which

are used to control the information flows in and out of the layer as well as when to forget and

recollect previous states. LSTM is formulated as follows:

 18

𝑖𝑡 = 𝛿(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑝𝑖 ʘ 𝑐𝑡−1 + 𝑏𝑖) (1)

𝑓𝑡 = 𝛿(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑝𝑓 ʘ 𝑐𝑡−1 + 𝑏𝑓) (2)

𝑐𝑡 = 𝑓𝑡 ʘ 𝑐𝑡−1 + 𝑖𝑡 ʘ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑅𝑐ℎ𝑡−1 + 𝑏𝑐) (3)

𝑜𝑡 = 𝛿(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑝𝑜 ʘ 𝑐𝑡 + 𝑏𝑜) (4)

ℎ𝑡 = 𝑜𝑡 ʘ 𝑡𝑎𝑛ℎ(𝑐𝑡) (5)

where 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input, forget, and output gates, respectively; 𝑐𝑡 is the so-called memory

cell; ℎ𝑡 is the hidden activation at time 𝑡; 𝑥𝑡 is the input signal; 𝑊, and 𝑅 are the weight matrices

applied on input and recurrent hidden units, respectively; 𝑝 and 𝑏 are the peep-hole connections and

biases, respectively; 𝛿(·) and 𝑡𝑎𝑛ℎ are the sigmoid and hyperbolic tangent activation functions,

respectively; ʘ means element-wise product. A visual representation of this architecture is displayed

of Figure 3.4.

Figure 3.4: A single LSTM cell's architecture.

3.2.2 Bidirectional long short-term memory

While LSTM’s ability to discover long-term patterns in the sequential data is beneficial in a

lot of cases, it can only consider past data. As originally proposed in [25], adding bidirectionality to

the network allows the model to consider not only past, but future data as well, usually leading to

 19

faster training times and better convergence. On Figure 3.5 it can be observed that bidirectional LSTM

(Bi-LSTM) makes use of a forward and backward LSTM sequence.

Figure 3.5: The structure of a BiLSTM network.

As is the case with FF-DNN models, we can add depth to the recurrent network by increasing

its hidden layer count. LSTM and BLSTM are inherently deep in time, but it appears that adding more

recurrent layers on top of each other allows the model to extract information across different time

scales, similar to how adding depth in an FF-DNN allows for higher and higher levels of abstraction.

3.2.3 Gated recurrent unit

A slightly more simplified variation of the LSTM, the gated recurrent unit (GRU) architecture

was recently defined and found to achieve a better performance than LSTM in some cases [26]. GRU

has two gating units (update and reset gates) to modulate the flow of data inside the unit but without

having separate memory cells. The update gate supports the GRU to capture long term dependencies

like that of the forget gate in LSTM. Moreover, because an output gate is not used in GRU, the total

size of GRU parameters is less than that of LSTM, which allow that GRU networks converge faster

and avoid overfitting. A diagram of a GRU cell can be observed on Figure 3.6.

 20

Figure 3.6: Topology of a single GRU cell

As opposed to standard RNN, the update and reset gates here can accurately control the

information flow in the network, allowing it to keep long-term information without altering it. The

weights of these gates are trainable, of course, and this allows the GRU network to match or even

outperform LSTM in many cases while being simpler in terms of parameters and training time.

 21

4 Methodology

In this section, I discuss the proposed approach based on the open-source Merlin TTS toolkit.

4.1 Overview of Merlin

The toolkit was originally proposed in [24] as an open-source benchmark TTS library to be

used for testing different neural architectures and vocoders. It is highly extensible, providing easy

access to settings thanks to the use of configuration files which store the configuration information in

a modular way. The toolkit is written in Python and uses the Theano library as its basis for neural

network implementations.

The toolkit uses an external front-end, in this case Festival, to generate the labels for the data,

which is then used as the neural network input. Also, as a first step, as we saw in our discussion of

vocoders in Chapter 2, parameters are extracted from the data based on the vocoder used.

Two separate neural networks are used in the Merlin toolkit. The first one models the duration

characteristics of the speech, and the second one is responsible for the acoustic parameters. Both of

these neural networks can be adjusted independently using the configuration files. After training the

networks, a vocoder is used to synthesize the speech waveform, making use of the parameters

extracted in the first step as well as the outputs of the neural networks. The default vocoder included

with the toolkit is WORLD, I will be comparing it to the proposed continuous vocoder through

evaluation of speech synthesized with different neural network architectures.

4.2 Database

For evaluation I will be using the CMU-Arctic database [27]. It includes labeled phonetic data

for both female (denoted SLT) and male (denoted BDL) speakers. Each speaker produced one hour

of speech, which was segmented into 1132 sentences, restricting their length from 5 to 15 words per

sentence (a total of 10045 words with 39153 phones) with a sampling rate of 16 KHz. Moreover,

CMU-ARCTIC databases contain phonetically balanced utterances with 100% phoneme, 79.6%

diphone, and 13.7% triphone coverage, produced by professional speakers experienced in speech

processing recordings. The waveform sampling rate of this database is 16 kHz. In the experimentation

phase 1000 utterances are used for training, 66 for validation and 66 for testing.

 22

4.3 Experimental conditions

After setting up the basic tools (Festival, necessary python libraries, etc.) Merlin is ready to

begin the process of network training and speech synthesis. The first step is to download the database,

which in my case was first the SLT, then the BDL speaker. This step also creates a global

configuration file, in which basic information is stored relating the type of speaker, vocoder used, as

well as the number of files used for training, validation, and for generating the final output. The

second step generates the configuration files for the duration and acoustic models. In the third and

fourth step, the duration and acoustic models are trained, respectively. Finally, the last step

synthesizes the speech.

The default values for all the neural networks include 6 hyperbolic tangent hidden layers of

size 1024, a learning rate of 0.02 with exponential decay, and 25 training epochs. Once the values in

a configuration file are changed, the corresponding step reads the new values the next time it is run.

Table 1 displays the default settings for the parameter extraction, neural architecture and learning

process stored in the configuration file.

 23

Table 1: Default neural network settings

Parameter Value

LF0

MVF

MGC

LF0 dimension

MVF dimension

MGC dimension

Input nodes

Output nodes

 1

1

60

3

3

180

425

186

Learning rate

Training epoch

Training utterances

 0.002

25

1000

Hidden layer size

Hidden layer type

Number of hidden layers

Output activation

Acoustic batch size

Duration batch size

Minimum phase order

 1024

TANH

6

Linear

256

64

511

Frequency warping coefficient 0.58

We can specify the model’s architecture (what layers we would like to use and their sizes) in

the beginning of the Architecture section in the configuration file. Here it’s important to specify a

size for each hidden layer, otherwise the program returns an error. After training, the model is stored

with the name specified with the model_file_name variable, the synthesis step will use this to load

the model from the disk.

The system supports dropout, a technique used to temporarily disable nodes in a layer, forcing

the other nodes to take on more or less responsibility for the inputs, often making the network more

robust by introducing noise into the training process. The model trains on batches of data, the

batch_size variable controls how many samples the model passes through before updating the

weights.

 24

We can control the initial learning rate with the learning_rate variable, and a learning rate

decay can also be specified here. Decay is often useful, because in the beginning large updates can

be made to the weights to decrease the loss quickly, and as the training progresses and we converge

on the global minimum, the learning rate can be decreased to fine-tune the weights in the last steps

and to avoid “jumping out” of the area of the minimum value. This is illustrated on Figure 4.1, finding

the correct value for the learning rate is crucial for optimal convergence.

Figure 4.1: The effects of different learning rate values.

We have options for constant learning rate, and linear or exponential decay. The toolkit

provides support for three optimizers: stochastic gradient descent (SGD), adam optimizer, and

resilient backpropagation (Rprop). Each have their own strengths, but in this case, I concluded that

the choice of optimizer has little effect on the outcome of the training, therefore I mostly resorted to

experimenting with SGD. Figure 4.2 illustrates how SGD gradually finds the minimum value for the

loss function, and how it can end up in different local minimums.

 25

Figure 4.2: Stochastic gradient descent, visualized on 2 input parameters, with the Z axis being the loss function.

Finally, the number of training and warmup epochs can be specified. Warmup is a technique

to minimize the effects of finding a set of closely related data in the training dataset, and then having

to un-learn the correlations observed in that small subset later. In the warmup period, learning rate is

reduced so as to minimize this effect in the beginning, reaching its intended value only at the end of

the warmup. The default value for this variable is 10, in our case I found that using 5-8 warmup

epochs provided satisfactory results.

After setting up the configuration files to the desired settings, the third, fourth and fifth steps

execute the duration and acoustic model training, and the speech synthesis, respectively. During

training, information is provided about the state of the execution on the console output.

 26

5 Experimental evaluation

5.1 Experimental goals

In my experimentation I take a look at how the default FF-DNN architecture can be improved

upon by the utilization of recurrent neural networks. I also aim to reduce the complexity of the neural

networks, making use of fewer hidden layers containing less nodes. Evaluation of the results is based

on both objective and subjective metrics, the latter focusing on two standard measurements,

intelligibility, and naturalness.

Automated hyperparameter optimization (Bayesian optimization for example) is difficult

here, unfortunately, as the results have to be evaluated subjectively first and foremost. Therefore, I

conduct a crude grid search, relying on empirical observations about the effects of different settings.

5.2 Observations during experimentation

In this section I discuss the observations made during testing of the different architectures.

Starting with feed-forward architectures, I can say that the default settings performed well in the case

of the WORLD vocoder, and alterations like swapping the TANH activation to ReLU did not have a

large impact on the result. Restricting the size of the hidden layers below 256 was detrimental to the

end result, at that point the model was probably experiencing underfitting. When it came to FF-DNN,

going below 4 hidden layers was also problematic. The choice of optimizer was of almost no

consequence here, and dropout did not improve the results, either. The default 25 training epochs

with 10 warmup epochs were satisfactory, with the last 5 epochs usually providing marginal

improvement, and the validation error increasing slightly after the warmup period, as is correct. At

this point it should also be mentioned that it was noticed that Merlin has support for early stopping,

if the validation error starts increasing during consequent epochs (due to overfitting usually), the

training will be stopped completely.

When it comes to continuous vocoder, the difference between feed-forward and recurrent

architectures was pronounced. As expected, feed-forward networks had subpar performance,

however, recurrent structures held more promise. Beginning with LSTM, it was obvious that the

recurrent hidden layer size had to be decreased compared to feed-forward layers. Typical sizes were

128 and 256, with 512 being the upper limit that was worth testing. Too many recurrent nodes caused

the training process to fail at certain times, with the validation error skyrocketing, or the GPU running

out of memory. Adding multiple LSTM layers to the network did not improve results, it seemed best

 27

to experiment with hybrid solutions containing both recurrent and feed-forward layers. Bidirectional-

LSTM was an improvement over LSTM, providing slightly better results and faster convergence

during the training process. Standard recurrent layers (denoted as RNN in the Merlin configuration

file) made the end result sound muddy, it seems like they could not capture the necessary longer-term

information like LSTM because of their lack of a memory cell. Gated recurrent units (GRU) were the

last type of hidden recurrent layer I experimented with, and they provided excellent results. Thanks

to their simpler structure compared to LSTM, the training process was also faster, due to the model

having fewer parameters.

During the training of the recurrent networks, it was observed that the adam optimizer

performed worse compared to SGD and rprop in many cases, while the difference between the latter

two was often negligible. Decreasing the batch size below 128 was also unfavorable, we can assume

that the recurrent networks relied on a larger batch of data to extract longer-term information from.

5.3 Developed neural architectures

Table 2 contains the default and the proposed neural architecture for the continuous vocoder.

Due to the use of a recurrent hidden layer, the complexity of the network is decreased, with both the

size and number of the layers reduced. The hidden layer types and sizes are listed in the order they

appear in the neural network. For example, in the case of the default feed-forward network, there are

six hyperbolic tangent (TANH) hidden layers of size 1024.

 28

Table 2: The details of the default and proposed neural model architecture

Architecture Default FF-DNN Proposed hybrid RNN

Hidden layer sizes 1024, 1024, 1024, 1024, 1024, 1024 256, 512, 1024, 1024, 1024

Hidden layer types TANH, TANH, TANH, TANH, TANH,

TANH

GRU, RELU, TANH, TANH,

RELU

Dropout 0.0 0.0

Batch size 256 256

Learning rate decay -1 (exponential decay) 1 (linear decay)

Learning rate 0.002 0.01

Optimizer
Stochastic gradient descent (sgd)

Stochastic gradient descent

(sgd)

Warmup epochs 10 8

Total number of

epochs
25 30

5.4 Objective evaluation

5.4.1 Logarithmic spectral distance

For objective evaluation of the results, the spectral distortion is designed to compute the

distance between two power spectra, the root mean square (RMS) log spectral distance (LSD) metric

is suggested here to carry out the evaluation as seen on equation (6).

𝐿𝑆𝐷𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑚𝑒𝑎𝑛(𝑙𝑜𝑔𝑃(𝑓𝑘) − 𝑙𝑜𝑔�̂�(𝑓𝑘))

2𝑁
𝑘=1 (6)

𝑃(f) is the spectral power magnitude of the natural speech, while �̂�(f) is the spectral power magnitudes

of the synthesized speech. The optimal value of LSDRMS is zero, which indicates a matching

frequency content. I also used a set of example spectrograms for the synthesized voices, to see

whether speech synthesis results captured the natural speaker. The results are shown in Figure 5.1,

and I found that the proposed framework has a lower LSDRMS equal to 1.8 dB that is closer to the

original speech spectrogram than the WORLD model. Consequently, the proposed system introduces

a smaller distortion to the sound quality and approaches a correct spectral criterion.

 29

Figure 5.1: Example of the spectrogram based on RNN-TTS for natural speech, and synthesized speech from the

continuous and WORLD vocoders.

Here it should be mentioned that during the continuous vocoder-based synthesis the silence

from the beginning and end of the file is cut, hence the difference in the spectrum images in those

areas.

5.4.2 Spectrograms

For additional evaluation, I present an overview of the spectrograms for the original and the

synthesized speech for both the male (BDL) and female (SLT) speaker. For the male speaker, the

spectrograms are based on the arctic_a0001.wav file from the database. On Figures 5.2 and 5.3, the

waveforms as well as the spectrograms of the speech samples can be compared visually.

 30

Figure 5.2: Spectrogram for the original speech waveform for the male speaker.

Figure 5.3: Spectrogram of speech waveform synthesized with continuous vocoder for male speaker.

 31

For the female speaker, I choose the arctic_b0535.wav file, as this voice line originally

contained a good example of different intonations in the same sentence. On figures 5.4 and 5.5, the

waveforms and spectrograms for the original and synthesized speech are displayed.

Figure 5.4: Waveform and spectrogram of the original speech sample for the female speaker.

 32

Figure 5.5: Waveform and spectrogram of the speech sample synthesized with continuous vocoder for the female

speaker.

Looking at the waveforms first, it can be noted that much of the silence is removed from the

beginning in the synthesized speech. In general, the amplitude is increased in the generated speech,

this is consistent with the increase in volume that can be noted upon listening to the samples.

The spectrograms show that most of the energy is located in the lower frequencies of the

speech waveforms, specifically, below 1000 Hz. In this region, the harmonics in the synthesized

speech are more clearly defined, leading to the usual “robotic” sound that characterizes speech

synthesis systems. That said, the higher frequency content is modeled well, with the most difference

showing around 3-4000 Hz.

It should be noted that due to the removal of the silence from certain parts of the waveform,

the temporal duration of the samples also shrunk, this should be taken into account when examining

the spectrograms.

5.4.3 Built-in metrics

The Merlin toolkit provides built-in metrics to provide information during training of the

neural networks. To get a general idea of how the neural network based on the continuous vocoder

 33

performs against the WORLD-based FF-DNN and RNN, the following key metrics are extracted from

the training process.

The Mel-Cepstral Distortion (MCD) is used to measure the difference between two cepstra,

in this case, the cepstra of the original recording and the features at the end of the learning process.

MCD is formulated as seen on equation 7.

𝑀𝐷𝐶 =
1

𝑁
∑ √∑ (𝑥𝑖,𝑗 − 𝑦𝑖,𝑗)2𝐾

𝑖=1
𝑁
𝑗=1 (7)

Here xi,j and yi,j are the (i,j)th cepstral coefficients of the natural and the generated speech,

respectively. In this case, the proposed model matched the performance of the default feed-forward

network based on the WORLD vocoder.

Correlation measures the degree to which the original and generated data are linearly related.

It is formulated as follows:

𝐶𝑂𝑅𝑅 =
∑ (𝑥𝑖− �̅�)(𝑦𝑖− �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖− �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

 (8)

Where �̅� and �̅� are the mean of the natural 𝑥𝑖 and synthesized 𝑦𝑖 speech frames; respectively.

In this metric the proposed system almost matched the result of the WORLD FF-DNN, surpassing

the WORLD RNN model.

On Table 3 I show these metrics as output by the fourth, acoustic training model step.

Table 3: Training metrics for the WORLD FF-DNN, WORLD RNN and Continuous RNN architectures.

Metric/architecture
WORLD FF-

DNN

WORLD

RNN

Continuous

RNN

Mel-Cepstral Distortion (lower is better) 4.903 dB 7.128 dB 4.903 dB

Correlation (higher is better) 0.77 0.657 0.712

5.5 Subjective evaluation

Due to time constraints, subjective evaluation was carried out on a mean opinion score (MOS)

basis on the female (SLT) speaker. 5 subjects were asked to rate the batches of samples (each

containing the same 5 sentences synthesized with different settings) and judge their naturalness and

intelligibility on a 0-100 scale, with 100 being the baseline of the original human speaker. As

 34

expected, the recurrent network with the WORLD vocoder and the feed-forward network with the

continuous vocoder showed poor results. The recurrent network for the continuous vocoder, however,

received good scores, trading some intelligibility for slightly improved naturalness. When asked, most

of the participants said that they preferred the intonation of the speech produced by the continuous

vocoder, however, there appears to be some added noise or “buzzing” to the speech, which might be

the cause of the lower intelligibility score. This is the typical robotic sound produced by many speech

synthesis systems. The volume of the speech produced by the continuous vocoder was also higher

than the one produced by WORLD, which could also contribute to the more pronounced noisiness.

On Table 2 the results of the MOS evaluation are shown.

Table 4: Sound quality of synthesized speech based on MOS.

 35

6 Challenges, conclusions, and future research

One of the challenges faced during the evaluation of the proposed architectures was that some

of the code in the Merlin toolkit was outdated and needed to be updated to modern standards (update

to Python3, replace deprecated libraries). Most of the code was written in 2016, and while having

support from python 2.6 to 3.6 means flexibility, it also introduced some problems on our virtual

environment. With these issues solved, however, testing could be conducted relatively quickly thanks

to the usage of a high-performance GPU, although the requirement to subjectively evaluate each result

proved automation of the process difficult. Overall, I showed the possibility and advantage of using

the proposed continuous vocoder as a viable alternative to WORLD through the example of a compact

recurrent neural architecture.

In the future, there is possibility to improve on the automation process, with the use of the

Bayesian optimizer to not only adjust the common hyperparameters of the learning process, but also

to find the optimal architecture by including the order, size, and type of the hidden layers in the

parameters of the optimizer. This would require setting up a robust and automated objective

evaluation process, using an expanded version of the objective metrics showed in this paper.

 36

Publications

[C1] Suciu Barnabás, Mohammed Salah Al-Radhi, Exploring Efficient Neural Architecture for

Statistical Parametric Text-to-Speech Synthesis, Speech Synthesis Workshop (SSW11), 2021,

Submitted.

Conference page: https://ssw11.hte.hu/en/

 37

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Mohammed Salah Al-Radhi of

the Faculty of Electrical Engineering and Informatics at the Budapest University of Technology and

Economics. His help was invaluable in the completion of this thesis work, I could count on his advice

any time I had stumbled upon an issue. Also, I thank Dr. Tamás Csapó Gábor for his help regarding

the testing environment and the GPU settings there. The high-performance Titan X GPU used to

conduct testing in this paper was provided by NVIDIA Corporation. Furthermore, I would like to

thank the participants of the subjective listening test for their detailed feedback.

 38

References

[1] Hunt A., Black A., “Unit selection in a concatenative speech synthesis system using a large

speech database,” in Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Atlanta, USA, pp. 373-376, 1996.

[2] Zen H., Tokuda K., Black A., “Statistical parametric speech synthesis,” Speech

Communication, vol. 51, no. 3, pp. 1039-1064, 2009.

[3] Zen H., Toda T., Nakamura M., Tokuda K., “Details of the Nitech HMM-Based Speech

Synthesis System for theBlizzard Challenge 2005,” IEICE Transactions on Information and

Systems, vol. E90–D, no. 1, pp. 325-333, 2007.

[4] Zen H., Senior A., Schuster M., “Statistical parametric speech synthesis using deep neural

networks” in Proceedings IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), Vancouver, Canada, p. 7962–7966, 2013.

[5] Oord A.V., Dieleman S., Zen H., Simonyan K., Vinyals O., Graves A., Kalchbrenner N., A.

Senior, and Kavukcuoglu K., "WaveNet: A generative model for raw audio," arXiv preprint

arXiv:1609.03499, 2016.

[6] Arik S. O., Chrzanowski M., Coates A., Diamos G., Gibiansky A., Kang Y., Li X., Miller J.,

Ng A., Raiman J., Sengupta S., Shoeybi M., “Deep Voice: Real-time Neural Text-to-Speech”,

Proceedings of the 34th International Conference on Machine Learning (ICML), Stockholm,

Sweden, pp. 195-204, 2017.

[7] Arik S. O., Wang Y., Skerry-Ryan R., Stanton D., Wu Y., Weiss R.J., Jaitly N., Yang Z.,

Xiao Y., Chen Z., Bengio S., Q. Le, Agiomyrgiannakis Y., Clark R., and Saurous R.A.,

"Tacotron: Towards End-to-End Speech Synthesis," in: Proceedings of the Interspeech,

Stockholm, Sweeden, pp. 4006-4010, 2017.

[8] Prenger R., Valle R., Catanzaro B., “WaveGlow: A Flow-based Generative Network for

Speech Synthesis” Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Brighton, UK, pp. 3617-3621, 2019.

[9] Wei P., Kainan P., Kexin Z., Zhao S., “WaveFlow: A Compact Flow-based Model for Raw

Audio”, arXiv:1912.01219v4 [cs.SD] 24 Jun 2020.

[10] Alan W. B., Heiga Z., Keiichi T., “Statistical Parametric Speech Synthesis”, Language

Technology Institute, Carnegie Mellon University, Pittsburgh, PA, Department of Computer

Science and Engineering, Nagoya Institute of Technology, Nagoya, JAPAN, Speech

Communication Volume 51, Issue 11, pp. 1039-1064, November 2009

[11] Qiong H., Korin R., Junichi Y., Javier L., “An experimental comparison of multiple vocoder

types”, The Centre for Speech Technology Research,University of Edinburgh, U.K., Toshiba

Research Europe Ltd, Cambridge, U.K., National Institute of Informatics, Tokyo, Japan,

SSW8, 135-140.

 39

[12] Kawahara H., Masuda-Katsuse I., de Cheveigne A., “Restructuring speech representations

using a pitch-adaptive time–frequency smoothing and an instantaneous-frequency-based F0

extraction: Possible role of a repetitive structure in sounds,” Speech Communication, vol. 27,

no. 3 , pp. 187-207, 1999.

[13] Raitio T., Suni A., Yamagishi J., Pulakka H., Nurminen J., Vainio M., and Alku P., “HMM-

based speech synthesis utilizing glottal inverse filtering,” IEEE Trans. on Audio, Speech, and

Lang. Proc., vol. 19, no. 1, pp. 153–165, Jan. 2011.

[14] Morise M., Yokomori F., and Ozawa K., "World: A vocoder based high-quality speech

synthesis system for real-time applications," IEICE Transactions on Information and Systems,

Vols. E99-D, no. 7, pp. 1877–1884, 2016.

[15] Al-Radhi M. S., Csapó T. G., Németh G., “High-Quality Vocoding Design with Signal

Processing for Speech Synthesis and Voice Conversion”, Budapest, Hungary, 2020

[16] Morise M., Kawahara H., and Katayose H., “Fast and reliable f0 estimation method based on

the period extraction of vocal fold vibra- 1884 IEICE TRANS. INF. & SYST., VOL.E99–D,

NO.7 JULY 2016 tion of singing voice and speech,” in Proc. AES 35th International

Conference, CD-ROM Proceedings, 2009.

[17] Morise M., “Cheaptrick, a spectral envelope estimator for high-quality speech synthesis,”

Speech Communication, vol.67, pp.1–7, 2015.

[18] Morise M., “Platinum: A method to extract excitation signals for voice synthesis system,”

Acoust. Sci. & Tech., vol.33, no.2, pp.123–125, 2012.

[19] Garner P.N., Cernak M., and Motlicek P., “A simple continuous pitch estimation algorithm,”

IEEE Signal Processing Letters, vol.20, no.1, pp.102–105, 2013.

[20] Drugman T. and Stylianou Y., “Maximum voiced frequency estimation: exploiting amplitude

and phase spectra,” IEEE Signal Process. Lett., vol.21, no.10, pp.1230–1234, 2014.

[21] Tokuda K., Kobayashi T., Masuko T., and Imai S., “Mel-generalized cepstral analysis: A

unified approach to speech spectral estimation,” Proc. International Conference on Spoken

Language Processing, Yokohama, Japan, pp.1043–1046, 1994.

[22] Drugman T., Thomas M., Gudnason J., Naylor P., and Dutoit T., “Detection of glottal closure

instants from speech signals: A quantitative review,” IEEE Trans. Audio, Speech, Language

Process., vol.20, no.3, pp.994–1006, 2012.

[23] Hochreiter S., Schmidhuber J., “Long short-term memory,” Neural computation, vol. 9, no. 8,

pp. 1735-1780, 1997.

[24] Zhizheng W., Watts O., King S., “Merlin: An Open Source Neural Network Speech Synthesis

System,” in Proceeding 9th ISCA Speech Synthesis Workshop (SSW9), California, USA,

2016.

[25] Schuster M., Paliwal K., “Bidirectional recurrent neural networks,” IEEE Transactions on

Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.

 40

[26] Chung J., Gulcehre C., Cho K., Bengio Y., “Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling,” arXiv preprint: 1412.3555, 2014.

[27] Kominek J., Black A.W., “CMU ARCTIC databases for speech synthesis,” Carnegie Mellon

University, 2003.

