

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Felipe Lopes Franklin

INVESTIGATION OF ENHANCED

LEARNING ABILITIES IN NEURAL

TEXT-TO-SPEECH SYNTHESIS WITH

MODIFIED TACOTRON 2

SUPERVISOR

Dr. Al-Radhi Mohammed Salah

BUDAPEST, 2021

2

Contents

Summary ... 5

Sumário ... 6

Chapter 1 Introduction .. 7

1.1 Related Work ... 9

Chapter 2 Text-To-Speech .. 11

2.1 Preprocessor ... 12

2.2 Encoder-Decoder .. 13

2.3 Vocoder ... 14

Chapter 3 Deep Neural Networks... 15

3.1 Artificial Neural Networks .. 15

3.2 Convolutional Neural Networks ... 17

3.3 Recurrent Neural Networks .. 20

3.3.1 Bidirectional Recurrent Neural Networks (BRNN) ... 22

3.3.2 Long short-term memory RNN (LSTM RNN) ... 22

3.3.2 Bidirectional Long short-term memory RNN (BLSTM) .. 26

Chapter 4 Methodology ... 27

4.1 Data ... 27

4.2 Tacotron 2 ... 28

4.2.1 Preprocessing ... 29

4.2.2 Encoding stage ... 29

4.2.3 Attention network ... 30

4.2.4 Decoding stage ... 30

4.3 WaveNet .. 31

4.4 WaveGlow ... 31

4.4 Griffin-Lim ... 32

Chapter 5 Experiments and Evaluation... 33

5.1 Setup .. 33

5.2 Mel spectrogram prediction .. 33

5.2.1 Tacotron 2 TensorFlow version ... 34

5.2.2 Tacotron 2 PyTorch version .. 36

5.3 Speech Synthesis ... 36

3

5.3.1 Griffin-Lim synthesis .. 37

5.3.2 WaveNet synthesis .. 38

5.3.3 WaveGlow synthesis ... 39

5.4 Objective Measurements ... 40

Chapter 6 Conclusion .. 41

List of Figures ... 42

References ... 43

4

STUDENT DECLARATION

I, Felipe Lopes Franklin, the undersigned, hereby declare that the present BSc thesis work has been

prepared by myself and without any unauthorized help or assistance. Only the specified sources

(references, tools, etc.) were used. All parts taken from other sources word by word, or after

rephrasing but with identical meaning, were unambiguously identified with explicit reference to the

sources utilized.

I authorize the Faculty of Electrical Engineering and Informatics of the Budapest University of

Technology and Economics to publish the principal data of the thesis work (author's name, title,

abstracts in English and in a second language, year of preparation, supervisor's name, etc.) in a

searchable, public, electronic and online database and to publish the full text of the thesis work on

the internal network of the university (this may include access by authenticated outside users). I

declare that the submitted hardcopy of the thesis work and its electronic version are identical.

Full text of thesis works classified upon the decision of the Dean will be published after a period of

three years.

Budapest, 10 December 2021

 ...…………………………………………….

 Felipe Lopes Franklin

5

Summary

Text-to-speech (TTS) synthesis is the generation of speech waveform, given textual input. There are

several uses in today’s world: car navigation, announcements in railway stations, response services

in telecommunications, and e-mail reading are some examples. As the technology evolves, more

natural and personalized speech can be produced. Recent advances in deep learning have shown

impressive results in the domain of speech synthesis. However, the quality of text-to-speech in the

conventional TTS systems is still far from natural-sounding utterances.

This thesis demonstrates the state-of-the-art technologies in text-to-speech synthesis for the Brazilian-

Portuguese language. Analyzing the literature about end-to-end TTS systems, a few publicly available

frameworks were chosen to test their performance in BR-PT language. In the experiments, text-to-

speech systems were built using the spectrogram prediction network Tacotron 2, which is capable of

learning and producing spectrograms from only text input. Different vocoders were tested, which are

the ones generating speech from the spectrograms generated. In this work, three state-of-the-art neural

vocoders, WaveNet, Waveglow and the Griffin-Lim, were selected for comparison.

6

Sumário

A síntese de texto para fala (TTS) é a geração da forma de onda da fala, dada a entrada textual.

Existem vários usos no mundo de hoje que são: navegação automóvel, anúncios em estações

ferroviárias, serviços de resposta em telecomunicações e leitura de e-mail são alguns exemplos.

Conforme a tecnologia evolui, uma fala mais natural e personalizada pode ser produzida. Avanços

recentes em algoritmos de aprendizado de máquinas, como por exemplo redes neurais de aprendizado

profundo, têm mostrado resultados impressionantes no domínio da síntese da fala. No entanto, a

qualidade da conversão de texto em voz nos sistemas TTS convencionais ainda está longe de ser

difundida em diferentes línguas com qualidade excepcional.

Esta tese testa o que há de mais moderno em tecnologia de síntese texto-fala para a língua Portuguesa

do Brasil (PT-BR). Analisando a literatura sobre sistemas TTS ponta a ponta, alguns frameworks

disponíveis publicamente foram escolhidos para testar seu desempenho na linguagem PT-BR. Nos

experimentos, sistemas texto para fala foram construídos usando uma rede de predição de

espectrograma na escala mel chamado Tacotron 2, que é capaz de aprender e produzir espectrogramas

apenas a partir da entrada de texto. Foram testados diferentes codificadores de voz, que são os que

geram a fala a partir dos espectrogramas gerados. Neste trabalho, os sintetizadores neurais de última

geração testados foram WaveNet e Waveglow. Além deles, o Griffin-Lim também foi selecionados

para comparação.

7

Chapter 1 Introduction

Communication has always been a crucial part of people’s daily lives. As a

collective of individuals, we survive through communication. Technology has developed

up to a point in which we no longer communicate just between ourselves but also with

machines. Another case is when advanced devices help us communicate, such as the well-

known theoretical physicist Stephen Hawking who due to a neurodegenerative disease

was no longer able to speak and used a speech synthesizer.

Text-To-Speech (TTS) is in the process of becoming one of the main forms of

communication between humans and computers. As the acronym states, it is the

translation of written text into sound, or more specifically a waveform signal. It has

numerous uses such as: helping in accessibility for blind or dyslexic people; home

assistants, like Alexa from Amazon [1], Siri from Apple [2], or Google Home [3];

Announcements in public spaces, for instance public transportation stations and stadiums.

TTS history starts in the 20th century with the Russian professor C. G.

Kratzenstein [4]. An electrical device manipulated by keys and levers was invented with

the capability of generating synthetic speech. In the following years, the field of TTS

research became more popular, consequently many other devices and implementations

were developed. An example of mechanical vocoder can be seen in Figure 1.1 below.

Figure 1.1: Image of mechanical vocoder the Voder by Homer W. Dudley [5].

8

One of the methods created to enhance TTS was using Machine Learning. A

technique that was developed in the mid-50s that has been having great success with state-

of-the-art speech synthesis. More specifically, Deep learning, which is a field of Machine

learning, has made good progress in providing natural results. Deep learning, which

consists of learning from the data itself, has made the machines independent. Its great

quality is also a flaw, because of its dependency on the data it learns from, Deep Learning

models require a large amount of consistent and clean information. In the case of TTS,

noisy and poor-quality speech examples can lead to defective models which in turn will

generate distorted sounds.

In this work, state-of-the-art deep learning frameworks for TTS are used to

synthesize a Brazilian-Portuguese (BR-PT) model, and consequently generate audio

samples. Existing tools were used to adapt to the language, there are no records of a BR-

PT TTS system [6]. This is the main inspiration of this thesis work, to implement and

modify existing TTS systems to BR-PT and compare their performances.

The Portuguese language is spoken in many countries. Originating from the

Iberian Peninsula of Europe, the language is spoken on three different continents. As time

the time has gone by, the language has changed. European and Brazilian Portuguese have

their differences [7]. For example, European speakers have a higher speech rate in terms

of words per minute [7], there are differences in word pronunciation and vocabulary.

These differences can have a great impact when building a TTS system dedicated to the

BR-PT language.

The implementation of the BR-PT TTS system was separated into two well

defined stages. The first stage, the framework used is Tacotron 2 [8], a neural network

architecture for speech synthesis directly from text. This framework will be used to

generate a subproduct, which are the mel spectrograms that will be used as input in the

next stage. The second stage uses the subproduct of Tacotron 2 and generate the speech.

This is done in 3 different ways: the first is using WaveNet [9], secondly WaveGlow [10]

and lastly the Griffin-Lim algorithm [11]. The training of all systems is based on high-

quality dataset of speech examples. For BR-PT, the publicly available dataset created by

Cassanova [6] was used. It was created with the purpose of providing a solid speech for

TTS use.

This work is divided into chapters in which the following will be explained. In

Chapter 2, there will be a brief introduction about how TTS works. Then, Chapter 3

9

explains the Deep Learning Neural Networks that are used in the models. Chapter 4 is

about methodology used in this work. The following frameworks used to produce the BR-

PT model will be presented: Tacotron 2 [8], the framework responsible for taking the first

step towards TTS; WaveNet [9], WaveGlow [10] and Griffin-Lim [11] which are the final

piece responsible for synthesizing the speech. Chapter 5 is the description of the

experiments conducted and their results. Lastly, Chapter 6 is the conclusion of the work

and annotations for future work.

1.1 Related Work

The first initiative to explore TTS in PT-BR started with the publicly available

Brazilian Portuguese Database [6] created by Casanova. As stated in his work, there is no

public dataset with a large amount of speech and quality available for speech synthesis.

About other TTS end-to-end systems, there are plenty of different system being

studied. Other models based on RNNs, which is the case of Tacotron [8], [12], like Deep

Voice 1 [13] and Deep Voice 2 [14]. Deep Voice 1 is inspired by traditional text-to-speech

pipelines and adopts the same structure, while replacing all components with neural

networks. It is relatively simple, and its inference was faster than real-time meaning audio

could be produced within a fraction of seconds. Deep Voice 2 is an improvement over the

original work and an increase of scope by creating a multi-speaker TTS system. Multi

speaker TTS systems had been studied before, they studied the possibility of adapting

different linguistic features [15]. The multi speaker scenario is interesting for cases where

there is not much data available from one source only. In the case of this work, the dataset

of a single speaker [6] was used so Deep Voice did not have any advantage over the

chosen frame works.

Attention based text-to-speech has been accomplished in Char2Wav as well as in

Tacotron [12]. Char2Wav is an extension of the work developed at SampleRNN [16].

SampleRNN investigates the use of recurrent neural networks to model dependencies in

audio data. Char2Wav uses the attention-based RNNs from Chorowski work [17] as a

frontend processor and the SampleRNN as the vocoder reconstructing the speech.

SampleRNN’s architecture is based on WaveNet [9] with certain limitations cited in their

10

paper. Consequently, the choice of WaveNet seemed a good way to test the BR-PT corpus

since the other architectures available are based on WaveNet itself.

As suggested in Casanova’s [6] work, the future investigations with the BR-PT

dataset should be using flow based architectures [18] such as FlowTron [19], Flow-TTS

[20] and WaveGlow [10]. Flow-TTS is the first flow-based spectrogram generation

network giving the same output as Tacotron [12]. It also uses Glow [21], just like

WaveGlow [10], in order to model the images. In this thesis work, the mel spectrogram

generation will be solely done by the Tacotron framework.

11

Chapter 2 Text-To-Speech

Before the implementation of any TTS system, there are two important things that

need to be understood: text and speech. Firstly, it is necessary to understand how we

produce speech. To produce a simple sound, we use many parts of our body: the lungs,

diaphragm, the larynx, lips, and tongue. The lungs and diaphragm are responsible for

pumping the air of the adequate pressure to the larynx. The larynx is responsible for

adjusting the pitch and tone. Lastly, the lips and tongue articulate the sound to the desired

degree.

At this point, the noise produced is going to be recorded and saved on a computer.

Audio can be understood as samples of air pressure over a period of time. The sampling

frequency in which these measurements are taken can vary from 22kHz to 44kHz, this

sampling frequency is important because can impact the final result [22]. This range is

explained by the Nyquist Theorem [23]. It states that the sampling frequency during data

acquisition should be at least twice the highest frequency contained in the signal. For

example, in the case of choosing a sampling frequency of 22kHz means each second of

speech has 22k amplitudes saved. The information in this format is suitable for the binary

computational environment and will be used as input to train TTS models.

Another model of voice used that can be mathematically computed is with Fourier

Transform, which will decompose the signal into the frequency domain [11]. This

representation after some filtering and adjustments to the scales of frequency and

amplitude will generated the spectrograms. They are the visual representation of the

sound in the frequency domain and will be used to synthesize the speech in the TTS

model.

Secondly, another material for the speech synthetization is written text. In the

finalized model, it will be the only input necessary to produce the synthetic speech.

Phrases are groups of words which act together as a grammatical unit. They are a good

representation of what will be said, but they do not explicitly portray the sound that needs

to be produced from that word. The primary concern in TTS models from text is not how

grammatically correct or well-constructed the sentence is, but rather how each word is

pronounced. Consequently, a better representation of the words needs to be explored.

12

Following this, phonemes are introduced in the TTS system to help the machine

to understand how to pronounce the words correctly. Phonemes are units of sound that

distinguish one word from another in any language [24]. The learning curve is similar to

when children are learning how to speak. At first, grammar or complexity of words is not

a concern, but how the words are going to be said. In the case of TTS systems, that is the

main concern.

TTS systems are composed of many building blocks before the synthetization of

the final audio. It could be simplified to 4 main blocks: Preprocessor, Encoder, Decoder,

and the Vocoder as can be seen in Figure 2.1. These blocks can be split in two categories:

Front-end and Back-end. Preprocessor and encoder are part of Front-end, they will be the

ones interpreting and extracting features from the text. Consequently, the Decoder and

Vocoder are the ones synthesizing the final audio.

Figure 2.1: General architecture of TTS system.

Deep Learning (DL) models are composed by these blocks, some models such as

Tacotron 2 [8] have an end-to-end architecture, meaning that it has all 4 blocks

implemented in its code. On the other hand, there are models solely focused on the last

process such as WaveNet [9] and WaveGlow [10]. In this chapter, these 4 blocks will be

explained separately.

2.1 Preprocessor

Preprocessors are responsible for interpreting the text and transforming it into a

more valuable format for machines to use. Tools like Ossian and Festival [25] are open

source tools available for this processing. Festival implementation is based on Hidden

Markov Models [26]. The goal of front-end tools is to transform into a more symbolic

description. Preprocessing usually starts at text cleaning, which removes every piece of

information in the string of text that will not be synthesized. Following that, is text

13

normalization, which is the conversion of dates, numbers, addresses, currency,

abbreviations into normal orthographic form. After this, there is Phonetization which

transforms the normalized text string into the phonetic version. Lastly, the syllabification

of phonetic text divides it into syllables.

This analysis is independent from the back-end. The final output is the Linguistic

features described in Figure 2.1.

 2.2 Encoder-Decoder

The encoder-decoder block in a TTS system comes from how the TTS problem

itself is approached by machine learning research. One difficulty of TTS is how the model

is going to map each Linguistic feature to the input audio. This association can be done

with a Sequence-to-sequence (seq2seq) model. It maps fixed-length input and output with

different sizes. This model comes from Natural Language Processing models introduced

in translations [27].

Apart from that, the text needs to be understood by the computer in a binary form.

The preprocessing of the text only transforms it into a more valuable resource. The

encoder is responsible for performing the embedding. Embedding is the term used in

Natural Language Processing for the representation of words into vectors [28]. Computers

do not understand language as humans do, everything needs to be translated to numbers.

Depending on the embedding, it can represent a single word or even a unique character.

This encoded form of the speech will go through the encoder layers in order for the model

to learn how to predict the text. The prediction is made on how each character and each

word influences the next character or word.

The Encoder-Decoder are the main processors of the model. The Encoder will

receive the Linguistic feature and learn its characteristics. It will collect the information

and propagate forward as an intermediate vector to the Decoder.

The input of the Decoder contains all the information needed for it to make the

prediction. It will read the entire intermediate vector and output Acoustic feature. The

Acoustic feature outputted by the decoder is commonly mel spectrogram. It is a

modification of the spectrograms explained before. A mel spectrogram is a spectrogram

14

converted into the mel scale [29]. The mel scale was created to better suit human earing.

It takes tone and pitch into consideration and therefore produces a more accurate

representation of the sound for humans.

2.3 Vocoder

The last block of the diagram is the one responsible for synthesizing the speech.

Vocoders are old implementations and once they existed before computers. The VODER

[4] invented was purely mechanic. Nowadays, more complex and accurate models exist.

Algorithms based on the Griffin-Lim algorithm [11] can make a good prediction of the

final waveform from spectrograms. WaveGlow [10] and WaveNet [9] use other types of

vocoders that will be explained later.

Figure 2.2: Modern day vocoder. An instrument used to produce human speech

electronically [30].

A modern-day vocoder is shown if Figure 2.2. This equipment is used by

musicians in order to reproduce human speech. It can be understood as a physical

interpretation of the machine learning models studied in this work. These are all the pieces

needed to understand a general TTS architecture. In the next chapter, each part of the

systems used in this thesis work are going to be explained in detail. Also, the frameworks

used take different parts of the whole system.

15

Chapter 3 Deep Neural Networks

Machine learning and Deep learning have been used to describe the mathematical

algorithms that can learn from its results. Both are under the same category of Artificial

Intelligence. According to the Cambridge Dictionary it is “the study of how to produce

machines that have some of the qualities that the human mind has, such as the ability to

understand language, recognize pictures, solve problems, and learn” [31]. However,

there is a clear difference. While machine learning operates with a manual extraction of

features, meaning that the features have been previously extracted such as someone

creating a table of information about the housing market. Deep learning is an independent

learning algorithm, in the housing market context, it would mean giving a picture of a

house to the model and it would interpret and evaluate the features of the house on its

own. In that case, the features in TTS are the linguistic and acoustic features that are

automatically extracted from the audio and spectrograms. Deep learning relies on high-

performance computing and large amounts of data.

3.1 Artificial Neural Networks

Artificial neural networks are inspired by the most powerful processor known, the

human brain. The basic structure is the neuron, which is a processing node connected to

each other by weight functions. Weight functions modify the input to be processed by the

node [32]. Each node receives weighted information via these connections and produces

an output by passing this information through an activation function. It will define how

the weighted sum of the inputs is transformed into an output from the node. Equation 3.1

simplifies the output of a node of the Artificial Neural Network in mathematical form.

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛[∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡)] (3.1)

There are several activation functions. The choice of an activation function will

depend on the problem and architecture of the ANN. The most common functions used

are: Sigmoid, Tanh and ReLu [33]. The functions can be seen respectively in Equations

3.2, 3.3 and 3.4 below:

16

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1
1 + 𝑒−𝑥⁄ (3.2)

 𝑇𝑎𝑛ℎ(𝑥) = 2
(1 + 𝑒−2𝑥) − 1⁄ (3.3)

 𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥) (3.4)

The elementary architecture of an artificial neural network is the Feed Forward.

As the information comes from the input, it passes through the weight functions and

neurons, it then moves forward to produce the last output. In the Feed Forward

architecture, there is no feedback from the output of the neurons to other neurons, that

information only moves forward to the output [32]. These can be single or multi-layered

depending on the number of hidden layers between the input and output layer. Single

layer architecture means the input is passed through the weight functions and then

computed by the output layer. On the other hand, for multi-layer, there are layers of

neurons between input and output, these are called the hidden layers which contain

neurons. A multi-layer architecture is shown in Figure 3.1. The input layer with 3 nodes

represents the inputs. The Hidden layer contains 4 nodes. Lastly the output contains two

nodes.

For example, in the case of predicting the price of a house based on its features.

The input nodes would receive information regarding the house, for instance the number

of rooms, size of the house in square meters and its distance from the city centre. Based

on historical data, these features would be computed, and the output would be a price

based on that. The learning process is to change the weights to achieve an output desired.

Below it is demonstrated in Figure 3.1 the architecture of a multi-layer Feed Forward

ANN.

17

Figure 3.1: Artificial Neural Network architecture.

 This training is made by the “back-propagation algorithm” [34]. It consists of

updating the weights by back propagating a gradient vector in which each element is

defined as the derivative of an error measured with respect to a parameter [32]. The loss

function is responsible for measuring how far from the target value the output is. This

later influences the adjustment of weights to get closer to the correct value. An epoch or

step indicates the number of passes of the entire training dataset has completed [32].

Continuing the example used before, the algorithm would correct the weighted

arrows with back-propagation giving the right importance to each input. In the housing

market, a bigger house impacts the price stronger than the number of windows. On the

other hand, the number of windows may impact the final price more than the distance

from the city centre. The weights that connect each node in the architecture are what

influences the final output. They are the spine of the algorithm. After the training of the

model, the resulting loss should be the closest as possible to zero, i.e., the predicted value

is similar to the real one.

3.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are commonly used in image deep

learning problems [35]. CNNs are important in TTS deep learning because the audio

signals are synthesized from mel spectrograms, and they are interpreted as images.

18

Algorithms have shown that CNNs work well in speech recognition by preprocessing

audio signals [36].

Figure 3.2: Destructuring of the image in the three primary colors. Each layer based on

the primary color will be summed up to give the final pixel color.

To begin with, a brief introduction on how computers understand images. Each

pixel in an image has a color. A diagram representing the RGB system can be seen in

Figure 3.1. The higher the quality of the image, the more pixels it has. The most popular

high resolution commercial television today is 4k, it has around 8 million pixels. Each of

these pixels contain the information of the color they are. The system followed is the

RGB. It is an additive color model in which red, green and blue colors are added together

generating all the different colors and shades. The three layers of colors are added up

giving the final pixel color [37].

A practical example of this system can be seen in Figure 3.3. The color of the

Budapest University of Technology and Economics (BME) logo in their website can be

represented in the RGB system as (147, 5, 47), or in hexadecimal representation 93052F.

This is the addition of different shades of Red, Blue and Green [37]. The first color in

Figure 3.3 is the shade of Red, which is very close to the actual final color. Then, it is

followed by the shade of Green. because of its low value the color resembles black. And

finally, the shade of Blue, which is a dark blue.

Figure 3.3: Representation of color addition with the BME logo color.

19

In Figure 3.4, a basic structure for a CNN is shown. The input image is modeled

as 3 different images in each primary color of the RGB representation. The next layers

are called Convolutional Layers. In each convolutional layer a Kernel convolution is

applied to local regions of the input through the calculation of the scalar product between

the kernel convolution weights and the region connected to the input [38].

Figure 3.4: Architecture of Convolutional neural network. First layers being convolutional

and pooling layers until the image is reduced to one dimension. The output of the

convolutional layer is the input of a Feed Forward Artificial Neural Network.

The Kernel convolution process is shown in Figure 3.5. A kernel is a function that

calculates dot product of the image according to the kernel mapping. The kernels are

usually smaller than the input image but spread along the entirety of the depth of the input

[38]. A new image is generated from the convolution between the input and the kernel.

This produced image represents a possible feature of the original image.

20

Figure 3.5: Kernel Convolution of input image. The activation map is an average. The

output of the operation is placed in a new image.

Since these are the hidden layers of the ANN, they may not make much sense for

humans, but they are useful for machine computations. These will generate a stack of

output images increasing the dimension as can be seen in Figure 3.4 [38]. Since working

with large images can become very costly due to the size that the ANN gets, every

convolutional layer down-samples the size of the images reducing the amount of pixels

in the convoluted image.

After a certain number of Convolutional Layers, the image will be reduced to the

size of one pixel. This effect be seen in the Figure 3.4. They image will be flattened and

only the features generated remain. The last set of layers are regular fully-connected

layers that will do the work just like in a regular ANNs [38]. These flattened features will

be learned and generate the final output.

3.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are also implemented in TTS systems [9],

[16], [39]. RNNs are called like this because the output of neurons are used horizontally

as input of another neurons [40]. It is useful in the case of acoustic modelling because

they can process sequences of inputs, which is completely different from a static image

for example and produce sequences of outputs. RNNs are able to map and remember

features learned from past processed nodes and enhance the accuracy of the output. The

RNN’s architecture is described in Figure 3.6.

21

Figure 3.6: Representation of Recurrent Neural Network. On the left, the rolled visual

representation of the whole network. On the right the unrolled representation of

individual layers.

As a result of its unique architecture, the training of this kind of network is

different from regular Back propagation [34]. The training for RNNs is called Back

propagation through time (BPTT) [41], it is more advanced and specific for sequence data

types. It works similarly to the regular version, where the mode trains itself by calculating

error from the output to the input. BPTT differs from the traditional version because it

sums errors at each timestep because it shares the parameters across the layers. Because

of how the weights are adjusted through the layers, it is easy for an error to be propagated.

The wrong operation on the weights can result in its sudden decrease at the point it gets

too close to zero. This issue is called the vanishing gradient. The opposite effect is also

possible. A weight’s importance can be wrongly interpreted by the algorithm causing it

to increase too much. This effect is called exploding gradient.

There are other architectures of RNNs that implement new features. Bidirectional

Recurrent Neural Networks (BRNN) and Long Short-Term Memory (LSTM). Moreover,

the fusion of the two is an existing and used model called the Bidirectional Long Shot-

term Memory Recurrent Neural Networks (BLSTM). They try different approaches to

better process sequential data and have a memory of the processed inputs.

22

3.3.1 Bidirectional Recurrent Neural Networks (BRNN)

A BRNN considers all available input sequence in both the past and future for

estimation of the output vector [42]. To do so, one RNN processes the sequence from

start to end in a forward time direction, this is seen as the blue arrows in Figure 3.7.

Another RNN processes the sequence backwards from end to start in a negative time

direction as demonstrated in Figure 3.7 with the red arrows. Outputs from forward states

are not connected to inputs of backwards states, and vice versa.

Figure 3.7: Architecture of Bidirectional Recurrent Neural Network. Forward states are

represented by blue lines. Backward states are represented by red lines.

This is an advantage and a constraint since BRNNs will only work if the start and

end of input sequences are known in advance [42].

3.3.2 Long short-term memory RNN (LSTM RNN)

Another architecture created to solve the vanishing gradient problem is the Long

Short-Term Memory (LSTM). LSTMs are designed to remember the information for

longer and therefore be more efficient [42]. In their flow, some pieces of information run

down the entire chain of layers with minimal linear interactions. LSTMs have a special

memory cell with self-connections in the recurrent hidden layer to maintain its states over

time, and three gating units (input, forget, and output gates) which are used to control the

information flows in and out of the layer as well as when to forget and recollect previous

states.

A general overview of the LSTM cell can be seen in Figure 3.8. The core

information runs through all cells horizontally. This is called the Cell State. It is

23

highlighted in Figure 3.9. Also, it is composed by several operations that represent the

gate units which will control the flow of the cell state.

Figure 3.8: General overview of LSTM cell.

Figure 3.9: Cell state highlighted in the High-level diagram of a LSTM cell.

The first gate is the Forget Gate. It is the one that decides if the cell state should

be remembered or not. Its result is a value between zero and one. The closer to zero means

it forgets and the closer to one means it remembers the information [42]. The Forget Gate

result is shown in Figure 3.10 below.

24

Figure 3.10: Forget Gate highlighted. Red arrow represents the output of the Forget Gate.

The mathematical representation of this operation is the following:

 𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3.5)

The next step is to decide if the information received should be stored in the cell

state. This is done by the Input Gate. The Input Gate is shown in Figure 3.11. Another

operation performed by the input gate is the generation of the updated parameters of the

Cell state. There will be two outputs of this gate: 𝑖𝑡 which is the decision of how much

should the Cell state be updated, and 𝑐′𝑡 which will be added to the Cell state.

Figure 3.11: Input Gate highlighted. The 𝒊𝒕 represents the decision to update the Cell State

or not. The purple arrow represents 𝒄′𝒕 which is the candidate to update the Cell state.

Mathematically, this is how the Cell state is represented:

 𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3.6)

 𝑐′𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3.7)

25

The next operation on the chain is to update the Cell state finally. This updated

state will be shared through other Cell units. This operation is described in Figure 3.12.

Figure 3.12: The Cell state is updated based on the Forget Gate and the Input Gate. New

values to be updated are also used as inputs.

This update is translated mathematically to: 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐′𝑡. The

Forget gate output seen in Equation 3.5 is used to update the state cell. As well as the

newly calculated cell state 𝑐′𝑡 seen in Equation 3.7 and the deciding factor which is 𝑖𝑡

described in Equation 3.6.

Lastly, The Output Gate. The output of this gate is based on the cell state. This

operation is shown in Figure 3.13.

Figure 3.13: Output Gate highlighted in light blue. The last gate that gives the parallel

information for other Cell units as well as the output of the node itself.

26

These final operations are the following:

 𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (3.8)

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (3.9)

The updated cell state 𝑐𝑡 goes through the Tanh transformation to be multiplied

with 𝑜𝑡 from the Output Gate. This operation is displayed in Equation 3.8 above. Equation

3.9 gives the Hidden state which will be carried to other LSTM cells. It is also the final

output of the layer going forward giving the final result of the network.

The previous architectures shown before have the vanishing gradient problem,

resulting in the network failing to learn long term sequential dependencies in data. LSTM

RNNs are popular for tackling this problem specifically [39], [42]. There are many other

architectures of LSTMs, but this standard version presented is necessary to understand

the frameworks used for TTSs systems.

3.3.2 Bidirectional Long short-term memory RNN (BLSTM)

BLSTMs are the fusion of the two previously presented architectures. Instead of

regular ANN nodes in the RNN, BLSTMs have LSTM memory cells in their architecture

[43]. In this manner, they are capable of learning in both directions, as well as keeping

record of it. They have shown to outperform unidirectional LSTMs and bidirectional

RNNs [44].

27

Chapter 4 Methodology

This chapter describes the Brazilian Portuguese TTS system implementations

based on Tacotron 2 [8] as the mel spectrogram generator. Also, using WaveNet [9],

Waveglow [10] and the Griffin-Lim Algorithm [11] as synthesizers. For Portuguese, there

is not any resource on TTS dedicated implementations.

4.1 Data

Firstly, it is necessary to point out that Brazilian and European Portuguese (EU-

PT) are quite different. Some pronunciations may differ a lot from one to another [45].

Some words are completely different in both languages. While “train” in BR-PT is

translated to “Trem”, in EU-PT is “Comboio”. Brazilians may condense expressions into

one verb. For instance, the act of wishing happy birthday to someone in can be said in

EU-PT as “dar os parabens” while in BR-PT it can be simplified to “parabenizar”. Other

examples can be seen in Table 4.1 below.

Table 4.1 Differences between European and Brazilian Portuguese language and its

translation to English

English EU-PT BR-PT

sport desporto esporte

goalkeeper guarda-redes goleiro

queue bicha fila

fridge frigorífico geladeira

pedestrian crossing passadeira faixa de pedestre

girl rapariga menina

espresso bica cafezinho

stapler agrafador grampeador

Portuguese is a language with few publicly available resources for speech

synthesis. In BR-PT, the database created by Casanova [6] was the only one found with

a decent size for deep learning. Although there are some public speech datasets for

European Portuguese, for example, the work has a small amount of speech, approximately

100 minutes, which normally is not optimal for training deep-learning models [46]. Other

more extensive databases can be found such as the CETUC dataset. It was constructed

28

for Speech Recognition studies; it has 145 hours of 100 speakers. On the other hand, each

speaker produced 1.45h on average. The amount of speech per speaker makes it difficult

for creating a single-speaker voice synthesis [6].

The recording was made by a native BR-PT speaker man. The final dataset

consists of a total of around 71 thousand words spoken by the speaker, 13 thousand unique

words, resulting in 3632 audio files and totaling 10 hours and 28 minutes of speech. Audio

files range in length from 0.67 to 50.08 seconds [6]. Since the audios were not recorded

in an acoustic studio, there is background noise present in the audio files, the authors also

made a trained and filtered version. For this purpose, the library RNNoise was used to

produce a 22kHz sampling rate [43]. It is based on Recurrent Neural Networks, more

specifically Gated Recurrent Unit (GRU) and demonstrated good performance for noise

suppression.

In the TTS-Portuguese Corpus paper, the authors conclude that this dataset could

be further investigated with other TTS system such as flow-based ones. In this thesis

work, this dataset is used not only with a flow-based TTS system, which is WaveGlow

[10], but also the probabilistic and autoregressive WaveNet [9].

4.2 Tacotron 2

Tacotron 2 [8] is an end-to-end TTS system that can be trained on <text, audio>

pairs generating a good quality speech. It is a revised and modified version of the original

Tacotron [12] to better fit WaveNet’s [9] architecture. Both versions are end-to-end

models, which means they contain both front and backend. The main difference between

the two is the synthesizer used. In the first Tacotron version, the Griffin-Lim Algorithm

while Tacotron 2 uses mel-spectrograms to synthesize speech using the WaveNet vocoder

[9]. Its part on this work is generating mel spectrograms for the analyzed vocodes:

WaveNet [9] and WaveGlow [10]. Tacotron 2 is responsible for the first 3 blocks of the

TTS system shown in Figure 2.1 in Chapter 2: Preprocessing, Encoding and Decoding. It

will receive <text, audio> pairs from training and output mel spectrograms. This

architecture is pictured in Figure 4.1 below. The three blocks are highlighted with

different colors. Each of them will be explained separately.

29

Figure 4.1: Tacotron 2 architecture. It is divided in three sections according to traditional

TTS systems models.

4.2.1 Preprocessing

Firstly, the process is initiated with the preprocessing of the Data. In Figure 4.1,

the Preprocessing blocks are highlighted in yellow. The preprocessor of Tacotron 2 [8] is

an improvement of the one introduced in Tacotron [12]. It is a 512-dimension character

embedding. Character embedding is very common in Natural Language Processing. In

the case of TTS, it is used to compute continuous vector representations of the words [28].

Recurrent Neural Networks have shown to be efficient in language modeling [47].

Because of the architecture of the RNNs, the model is capable of learning on how to

associate each word with its neighbors, not only the successor words, or characters, but

its predecessor.

4.2.2 Encoding stage

The character embedding is processed by the encoder. This step helps with

convergence and improves generalization [12]. It consists of three Convolutional Neural

Network layers with Rectified Linear Unit (ReLU) [48]. CNNs have shown to be very

popular in the Text-To-Speech field getting excellent results through different types of

architecture [9], [12], [16]. It is important in this context because it will learn features

from the character embeddings that will better connect to the final mel spectrogram

30

output. The last step of preprocessing is the bidirectional LSTM layer generating the

encoded features. LSTM are designed to remember information for longer and therefore

the encoded features are more precise [49].

4.2.3 Attention network

The attention mechanism is what connects the output of the encoder to the input

of the decoder. A potential issue with this encoder–decoder architecture is that an ANN

would need to compress the input into a fixed-length vector to be used by the decoder

[50]. This may make it difficult for ANNs to cope with long sequences, such as long

sentences.

It is a component responsible for managing the interdependence between the input

and the output of the decoder. This mechanism is depicted in Figure 4.1 by the arrows in

both directions connecting the encoder to the decoder. In the case of Tacotron 2, it is

connecting the encoded features to the generated mel spectrograms [51]. The output of

the attention is called the attention context, which is the mapping of the input with the

desired output. The Attention model used in Tacotron 2 is the Location-Sensitive

proposed by Chorowski [17]. This model is an addition to the additive attention

mechanism [50].

The additive attention mechanism works each time the proposed model generates

a decoder timestep, it does a soft search in the sources where the most relevant

information is concentrated [8]. The location sensitiveness is computed for the alignment

between the generated state and the previous alignment [17]. Different attention

mechanisms have been proposed to Tacotron 2 which could improve its results [51].

4.2.4 Decoding stage

The decoder is an autoregressive RNN which predicts the mel spectrogram from

the encoded input sequence one frame at a time [8]. The predicted previous timestep

passes through the pre-net block in Figure 4.1 and is concatenated with the attention

context. Then, the result of this concatenation is passed through a linear transformation

predicting the spectrogram frame. Finally, this prediction is passed through a CNN of 5

layers improving its overall reconstruction [8].

In parallel with the prediction, the output of the concatenation of the decoder,

which are the two layers LSTM, and the attention context is further processed by a linear

projection to predict the probability that the output sequence has been completed [8]. This

31

process is the “Stop Token” depicted in Figure 4.1. The final output is the mel

spectrogram which will be used in this work by WaveNet and WaveGlow to synthesize

the audio.

4.3 WaveNet

WaveNet is fully probabilistic and autoregressive, with the predictive distribution

for each audio sample conditioned on all previous ones [9]. The main concept behind

WaveNet is Causal Convolutions. They make sure the model follows the ordering of the

data, the prediction of a certain timestep is not conditioned on any future timestep. The

implementation used in WaveNet is the Dilated Causal Convolution, it is a convolution

where the filter is applied over an area larger than its length by skipping input values by

a given length [9]. This architecture helps to receive the biggest amount of input possible

maintaining the input’s resolution as well as computational efficiency [9]. The

architecture of dilated causal convolutions is depicted in Figure 4.2.

Other components of WaveNet architecture are based on the PixelCNN

architecture and will not be explored in this thesis work [52]. The system will be used as

a vocoder, trained with mel spectrograms generated from the Tacotron 2.

Figure 4.2: Architecture of the Dilated Causal Convolution network.

4.4 WaveGlow

WaveGlow is a flow based network capable of generating state of the art audio

files from mel spectrograms [10]. It combines ideas from WaveNet [9] and Glow [21].

32

The input goes through the network as groups of 8 audio samples in vector form, which

is depicted in Figure 4.3 as the “squeeze to vectors” block in the schema. Then, it

processes these vectors through “steps of flow” which are represented by the highlighted

number twelve in the blue box in Figure 4.3. A step of flow here consists of an invertible

1x1 convolution followed by an affine coupling layer, described below [10].

Figure 4.3: WaveGlow architecture.

The affine coupling layer is a way to stack a sequence of invertible bijective

transformation functions [21]. The functions used were inspired in the WaveNet [9]

dilated convolutions and skip connections, with the exception that they are not causal.

The affine coupling layer is also where the upsampled mel spectrograms are included in

order to condition the generated result on the input [10]. Up sampling is bringing back

the initial resolution that the image had originally. On the case of CNNs, the images are

down sampled, and its feature extracted in the process. This helps with computational

power, it is easier to work with smaller vectors and matrices [53]. In WaveGlow, the mel

spectrograms are upsampled to be transformed into the standard resolution.

4.4 Griffin-Lim

 The Griffin-Lim algorithm [11] is the only synthesizer used in this work

that is not based on ANNs. It is an algorithm that synthesizes waveforms from predicted

features, a different target for seq2seq decoding [27] and waveform synthesis. The

seq2seq target can be highly compressed if it provides sufficient intelligibility and

information for an inversion process, which could be fixed or trained. It was firstly used

in the original Tacotron [12], the post-net processing is responsible for taking the seq2seq

output and feeding it to the Griffin-Lim that synthesizes the waveform. It showed strong

results and it has a simple implementation.

33

Chapter 5 Experiments and Evaluation

The experiments were divided into two categories: the mel spectrograms

generation and the speech synthesis. Two publicly available versions of the Tacotron 2

were used in this work. One of them is the NVIDIA [54] codebase which is compatible

with WaveGlow [10] based on PyTorch [55]. Additionally, the TensorFlow

implementation [56] compatible with WaveNet [57]. These two versions will be tested

with the BR-PT [6] speech corpus. Following this, the speech is synthesized by the three

vocoders presented in Chapter 4: WaveGlow [10], WaveNet [9] and Griffin-Lim [11].

Each one of them will generate the audio files which will be evaluated through Objective

measurements.

Objective evaluations were carried out with the finalized audio samples. Two

metrics were taken into consideration to perform the analysis: Frequency-weighted

segmental SNR (fwSNRseg) and Extended Short-Time Objective Intelligibility (ESTOI).

fwSNRseg relates the SNR of the signal to its intelligibility. Lastly, ESTOI was

introduced to measure speech performance by calculating correlation between temporal

envelopes of natural and synthesized speech [58], [59].

5.1 Setup

The training of the models was conducted in the SmartLab, which is the Speech

Technology and Smart Interactions Laboratory. The laboratory has a server provided by

the Department of Telecommunications and Media Informatics. The server is equipped

with a NVIDIA GeForce GTX TITAN Xp GPU. The GPU has 8 cores and 32 GB of

Memory. This kind of equipment is necessary to make the extensive calculations and

matrix operations that are performed in the training of a DNN.

5.2 Mel spectrogram prediction

Compatibility between the mel spectrogram prediction and the vocoder to

synthesize the input is crucial. Since images can be vectorized differently, incompatible

frameworks would not generate good quality speech or would not work due to the

34

mathematical impossibility of some matrix operations. The two versions used of

Tacotron, and their output are separated.

5.2.1 Tacotron 2 TensorFlow version

The first Tacotron version experimented was the publicly available model based

on TensorFlow [57], [56]. It is an implementation of the Tacotron 2 [8], the version

compatible with WaveNet [9]. The network was trained up to 100 thousand steps. The

evaluation of the model is shown in Figure 5.1. The enhanced model used for this work

was decreasing the learning rate of the training. The learning rate proposed in the

available model [57] lead to exploding loss, when the loss between the predicted output

and the ground-truth was too big. This caused problems during the training because it

would stop every time the loss exploded, needing it to be resumed manually.

Due to the problem with the learning of Tacotron ANN, the training time was not

exactly measured since it would only be resumed when the server was checked. In total,

a rough estimation of the training time of Tacotron was around 12 days.

Figure 5.1: Comparison between target and predicted mel spectrogram on training set

made by Tacotron.

Two custom sentences were used to produce mel spectrograms. These sentences

are the only input used to produce the mel spectrograms differently from the mel

spectrogram in Figure 5.1 which had the <text, audio> pair as input.

The two custom sentences and their translations were:

• “O futebol para mim era feito de gols, muitos gols.” Which translates to

“Soccer for me was made of goals, lots of goals.” (1)

35

• “Ocorrem em grande quantidade, especialmente nas encostas das

montanhas.” Which translate to “[They] Happen in big quantities,

especially in the mountainside.” (2)

These sentences will be used as input for the vocoders in the next section of the

Experiments chapter. The mel spectrograms generated are displayed below in Figure 5.2

and Figure 5.3.

Figure 5.2: Mel spectrogram generated from custom sentence (1).

Figure 5.3: Mel spectrogram generated from custom sentence (2).

It can be concluded that when predicting the mel spectrogram with a baseline, the

model seems to be more successful. The <text, audio> pair seemed to give more

information for the network to predict the mel spectrogram.

36

5.2.2 Tacotron 2 PyTorch version

The Tacotron 2 PyTorch version was made by NVIDIA [54]. The mel

spectrograms generated by the NVIDIA’s Tacotron performed the worst. It is possible to

see in Figure 5.4 and 5.5 that the network was not capable of learning any feature

generation. The training of the model was stopped after 240k steps for 7 days, this does

not represent the full training suggested by the framework. The mel spectrogram

displayed for both sentences have basically nothing expressed.

Figure 5.4: Mel spectrogram generated from NVIDIA's Tacotron 2 implementation for

sentence (1).

Figure 5.5: Mel spectrogram generated from NVIDIA's Tacotron 2 implementation for

sentence (2).

The predominant green color in the mel spectrograms represents a weak strength

of the signal. Meaning, it is basically zero.

5.3 Speech Synthesis

The speech synthesis chapter will be divided into 3 sub chapters. Each of these

will describe the experiments conducted in each of the vocoders studied in this thesis

37

work. Linear-frequency spectrograms are produced from the final audio files generated

by the synthesizers and compared to the ground truth.

5.3.1 Griffin-Lim synthesis

The Griffin-Lim synthetization was made with linear frequency spectrograms

from the TensorFlow Tacotron implementation [57]. The post-processing net of the

framework can produce the linear frequency spectrograms as well as mel scale

spectrograms. Apart from the objective measurements taken, the linear frequency

spectrograms from the audio generated give more detail about the synthesized audio. The

linear frequency spectrograms comparison was made with MATLAB. The original and

the synthesized audio from Sentence 1 can be seen below in Figure 5.6 and 5.7

respectively.

It is possible to notice that the Griffin-Lim algorithm was not capable of

interpreting fully the mel-spectrogram generated. At the beginning of the audio, which is

the left side of the figure, the Griffin-Lim had a better accuracy. At the right side of Figure

5.6 and 5.7, they both differ, meaning the speech produced had some mismatches.

Figure 5.6: Sentence (1) ground truth audio file spectrogram.

38

Figure 5.7: Sentence (1) Griffin-Lim generated audio file spectrogram.

5.3.2 WaveNet synthesis

The WaveNet synthesis was also made with the TensorFlow Tacotron 2

implementation [57]. The training consisted of 500k steps over 15 days. The learning rate

of the model was changed during the training to find a better fit for the Brazilian

Portuguese corpus. WaveNet displayed a noisier signal than the Griffin-Lim version of

Sentence (1). In Figure 5.8, it is possible to see a lot more yellow in areas where the

original version, seen in Figure 5.6, is blue.

Figure 5.8 Sentence (1) WaveNet generated audio file spectrogram.

39

5.3.3 WaveGlow synthesis

WaveGlow experiments had a poor performance. The trained model was the

NVIDIA Tacotron 2 PyTorch implementation [54]. This training was made until the 147k

step but that is not equivalent to the full completion of the training. WaveGlow

architecture was made to support distributed training, meaning the workload can be

processed by several GPUs therefore speeding up the process. Due to the nature of its

architecture, the training needed for the model to reach a good quality is very long. In the

department’s available server, NVIDIA’s Tacotron was trained in 7 days with one GPU.

The changed version had accents added to the symbols table, so letters such as “à”, “ã”

and “â” could also be decoded and translated to the vectorized version of sentences.

Due to the bad quality mel spectrograms generated from the Tacotron 2 PyTorch

version, the audio generated was blank. The vocoder output matched the bad quality mel

spectrogram seen in Figure 5.4 and 5.5 above. The lack of training for Tacotron 2 affected

directly the wave generated. We can observe that a good quality mel spectrogram

generation can have a greater impact than a good quality synthesizer.

The results obtained can be explained by the difference in size of databases used

in the English and Mandarin Chinese versions [9]. The authors used two different

databases one containing 44h of recorded speech and another containing 24h in English.

For training the network in Mandarin Chinese, the database contained 34.8h of audio files

[9]. The first publicly available BR-PT database used in this thesis work is a starting point

in the Portuguese TTS field but requires more data.

The smaller learning rate is something that directly affected the training of the

models and therefore the output. Even tough is was necessary to reduce the learning rate

in order to run the training smoothly. Choosing a proper learning rate can be difficult. A

too small learning rate may lead to slow convergence, while a too large learning rate can

deter convergence and cause the loss function to fluctuate and get stuck in a local

minimum or even to diverge [60]. In the case of the experiments conducted, it seems that

WaveNet was not capable of reaching the desired output. The WaveNet training was

finished in 497 thousand steps. It had the same issue with training of Tacotron 2, where

the loss would be exploding. Due to the faced issues, the training lasted longer and had

periods of inactivity. Additionally, because of the smaller learning rate, it can be

concluded that WaveNet required more training to result in better generated speech.

40

The Griffin-Lim algorithm displayed a better performance. The training for the

algorithm is much faster compared to the others. According to the implemented version

[57], 60 iterations is enough for it to converge. Producing the speech based on linear-

frequency mel-spectrograms seemed to work more efficiently. The results obtained in this

work match the work done by Casanova in the creation of the PT-BR Portuguese database

[6]. A different codebase for the Tacotron 2 was used, the Mozilla TTS [6] and produced

speech with good quality.

5.4 Objective Measurements

Table 1 summarizes the objectives measurements that were analyzed. Each

generated speech was compared to the original audio file to produce the scores. The

ESTOI [59] metric introduced by Jensen and Taal are used to calculate the correlation

between the temporal envelopes of natural and synthesized speech. Because of the bad

performance of WaveGlow, it shows a small number, basically zero. WaveNet and

Griffin-Lim algorithm display similar performance. For the fwSNRseg [61], WaveNet

showed decent performance compared to the other, but the signals seem to have a lot of

noise as it can be seen in Table 5.1.

Table 5.1 - Objective Measurements for produced speech with different synthesizers

Models ESTOI fwSNRseg

Griffin-Lim 0.0052925 0.20784

WaveNet 0.0057028 0.31812

WaveGlow 5.74E-06 -0.12038

41

Chapter 6 Conclusion

This Thesis work and its results are useful for future of BR-PT Text-To-Speech

technology. I have analyzed and tested the first publicly available BR-PT speech dataset

made for TTS systems. The data extracted from the trainings and generated mel

spectrograms as well as the audio files will be important for future research developing a

dedicated TTS architecture solely based on BR-PT.

The practical applications of the results are a shortcut to start developing a BR-

PT dedicated TTS system. WaveNet [9] displayed a bright future to be investigated. The

architecture showcased the best objective results among the synthesizers tested. With

more time for training and a bigger BR-PT speech corpus, I believe there’s a great chance

to achieve state-of-the-art quality such as was achieved in their English and Chinese

Mandarin version. Tacotron [12] combined with Griffin-Lim algorithm [11] is a good

alternative for simpler implementations. The need to work only on Tacotron neural

network may ease the progress towards a cost-efficient system. WaveGlow showcased

that it requires way more time of training in order to display exciting results. Its

architecture optimized for parallel training may affect its performance when working only

on one GPU.

One of the challenges faced during the experiments was the amount of

computational power needed. The server provided by the department was efficient in its

work. But the number of experiments to be done combined with the complexity of the

implementation on a new language required more time to train the models for longer. In

future work, I intent to investigate further other architectures such as the HiFi-GAN [62],

which is based on generative adversarial networks [63] and FastPitch [64] a fully parallel

TTS model conditioned on fundamental frequency contours.

42

List of Figures

1.1 Image of mechanical vocoder the Voder by Homer W. Dudley. 7

2.1 General architecture of TTS system ... 12

2.2 Modern day vocoder. An instrument used to produce human speech electronically 14

3.1 Artificial Neural Network architecture. .. 17

3.2 Destructuring of the image in the three primary colors. Each layer based on the

primary color will be summed up to give the final pixel color. 18

3.3 Representation of color addition with the BME logo color...................................... 18

3.4 Architecture of Convolutional neural network. First layers being convolutional and

pooling layers until the image is reduced to one dimension. The output of the

convolutional layer is the input of a Feed Forward Artificial Neural Network. 19

3.5 Kernel Convolution of input image. The activation map is an average. The output of

the operation is placed in a new image. .. 20

3.6 Representation of Recurrent Neural Network. On the left, the rolled visual

representation of the whole network. On the right the unrolled representation of individual

layers. It is possible to visualize how the information is passed through layers 21

3.7 Architecture of Bidirectional Recurrent Neural Network. Forward states are

represented by blue lines. Backward states are represented by red lines 22

3.8 General overview of LSTM cell ... 23

3.9 Cell state highlighted in the High-level diagram of a LSTM cell 23

3.10 Forget Gate highlighted. Red arrow represents the output of the Forget Gate 24

3.11 Input Gate highlighted. The 𝒊𝒕 represents the decision to update or not the Cell State.

The purple arrow represents 𝒄′𝒕which is the candidate to update the Cell state 24

3.12 Cell state update based on Forget Gate and Input Gate. New values to be updated are

also used as input .. 25

3.13 Output Gate highlighted in light blue. The last gate that gives the parallel information

for other Cell units as well as the output of the node itself. ... 25

4.1 Tacotron 2 architecture. It is divided in three sections according to traditional TTS

systems models ... 29

4.2 Architecture of dilated causal Convolution network .. 31

4.3 WaveGlow architecture .. 32

5.1 Comparison between target and predicted mel spectrogram on training set made by

Tacotron. ... 34

5.2 Mel spectrogram generated from custom sentence (1) ... 35

5.3 Mel spectrogram generated from custom sentence (2) ... 35

5.4 Mel spectrogram generated from NVIDIA's Tacotron 2 implementation for sentence

(1) ... 36

5.5 Mel spectrogram generated from NVIDIA's Tacotron 2 implementation for sentence

(2) ... 36

5.6 Sentence (1) ground truth audio file spectrogram .. 37

5.7 Sentence (1) Griffin-Lim generated audio file spectrogram 38

5.8 Sentence (1) WaveNet generated audio file spectrogram .. 38

43

References

[1] A. Purington, J. G. Taft, S. Sannon, N. N. Bazarova, and S. H. Taylor, “‘Alexa is my

new BFF’: Social Roles, User Satisfaction, and Personification of the Amazon Echo,”

in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors

in Computing Systems, Denver Colorado USA, May 2017, pp. 2853–2859. doi:

10.1145/3027063.3053246.

[2] T. Gruber, “Siri: A Virtual Personal Assistant,” p. 21.

[3] P. Dempsey, “The Teardown: Google Home personal assistant,” Engineering &

Technology, vol. 12, no. 3, pp. 80–81, Apr. 2017, doi: 10.1049/et.2017.0330.

[4] H. Dudley, R. R. Riesz, and S. S. A. Watkins, “A synthetic speaker,” Journal of the

Franklin Institute, vol. 227, no. 6, pp. 739–764, Jun. 1939, doi: 10.1016/S0016-

0032(39)90816-1.

[5] C. Trilnick, “Voder,” Jan. 21, 1938. https://proyectoidis.org/voder/ (accessed Aug.

12, 2021).

[6] E. Casanova et al., “TTS-Portuguese Corpus: a corpus for speech synthesis in

Brazilian Portuguese,” arXiv:2005.05144 [cs, eess], Jun. 2021, Accessed: Nov. 08,

2021. [Online]. Available: http://arxiv.org/abs/2005.05144

[7] B. S. A. e Castro, V. de O. Martins-Reis, A. C. Baptista, and L. C. Celeste, “Fluency

profile: comparison between Brazilian and European Portuguese speakers,” CoDAS,

vol. 26, no. 6, pp. 444–446, Dec. 2014, doi: 10.1590/2317-1782/20142014184.

[8] J. Shen et al., “Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram

Predictions,” arXiv:1712.05884 [cs], Feb. 2018, Accessed: Nov. 08, 2021. [Online].

Available: http://arxiv.org/abs/1712.05884

[9] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,”

arXiv:1609.03499 [cs], Sep. 2016, Accessed: Nov. 08, 2021. [Online]. Available:

http://arxiv.org/abs/1609.03499

[10] R. Prenger, R. Valle, and B. Catanzaro, “WaveGlow: A Flow-based Generative

Network for Speech Synthesis,” arXiv:1811.00002 [cs, eess, stat], Oct. 2018,

Accessed: Nov. 08, 2021. [Online]. Available: http://arxiv.org/abs/1811.00002

[11] D. W. Griffin and J. S. Lim, “SIGNAL ESTIMATION FROM MODIFIED

SHORT-TIME FOURIER TRANSFORM,” p. 4.

[12] Y. Wang et al., “Tacotron: Towards End-to-End Speech Synthesis,”

arXiv:1703.10135 [cs], Apr. 2017, Accessed: Nov. 18, 2021. [Online]. Available:

http://arxiv.org/abs/1703.10135

[13] S. O. Arik et al., “Deep Voice: Real-time Neural Text-to-Speech,”

arXiv:1702.07825 [cs], Mar. 2017, Accessed: Dec. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1702.07825

[14] S. Arik et al., “Deep Voice 2: Multi-Speaker Neural Text-to-Speech,”

arXiv:1705.08947 [cs], Sep. 2017, Accessed: Dec. 09, 2021. [Online]. Available:

http://arxiv.org/abs/1705.08947

[15] Z. Wu, P. Swietojanski, C. Veaux, S. Renals, and S. King, “A study of speaker

adaptation for DNN-based speech synthesis,” in Interspeech 2015, Sep. 2015, pp.

879–883. doi: 10.21437/Interspeech.2015-270.

[16] S. Mehri et al., “SampleRNN: An Unconditional End-to-End Neural Audio

Generation Model,” arXiv:1612.07837 [cs], Feb. 2017, Accessed: Nov. 18, 2021.

[Online]. Available: http://arxiv.org/abs/1612.07837

[17] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-

Based Models for Speech Recognition,” arXiv:1506.07503 [cs, stat], Jun. 2015,

Accessed: Nov. 27, 2021. [Online]. Available: http://arxiv.org/abs/1506.07503

44

[18] E. Hoogeboom, R. van den Berg, and M. Welling, “Emerging Convolutions for

Generative Normalizing Flows,” arXiv:1901.11137 [cs, stat], May 2019, Accessed:

Dec. 09, 2021. [Online]. Available: http://arxiv.org/abs/1901.11137

[19] R. Valle, K. Shih, R. Prenger, and B. Catanzaro, “Flowtron: an Autoregressive

Flow-based Generative Network for Text-to-Speech Synthesis,” arXiv:2005.05957

[cs, eess], Jul. 2020, Accessed: Dec. 09, 2021. [Online]. Available:

http://arxiv.org/abs/2005.05957

[20] C. Miao, S. Liang, M. Chen, J. Ma, S. Wang, and J. Xiao, “Flow-TTS: A Non-

Autoregressive Network for Text to Speech Based on Flow,” in ICASSP 2020 - 2020

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), Barcelona, Spain, May 2020, pp. 7209–7213. doi:

10.1109/ICASSP40776.2020.9054484.

[21] D. P. Kingma and P. Dhariwal, “Glow: Generative Flow with Invertible 1x1

Convolutions,” arXiv:1807.03039 [cs, stat], Jul. 2018, Accessed: Nov. 27, 2021.

[Online]. Available: http://arxiv.org/abs/1807.03039

[22] H. G. Hirsch, K. Hellwig, and S. Dobler, “Speech Recognition at Multiple

Sampling Rates,” p. 5, 2001.

[23] L. Lévesque, “Nyquist sampling theorem: understanding the illusion of a spinning

wheel captured with a video camera,” Phys. Educ., vol. 49, no. 6, pp. 697–705, Nov.

2014, doi: 10.1088/0031-9120/49/6/697.

[24] V. Vasilevski, “Phonologic Patterns of Brazilian Portuguese: a grapheme to

phoneme converter based study,” p. 10.

[25] M. Toman and M. Pucher, “An Open Source Speech Synthesis Frontend for

HTS,” in Text, Speech, and Dialogue, vol. 9302, P. Král and V. Matoušek, Eds.

Cham: Springer International Publishing, 2015, pp. 291–298. doi: 10.1007/978-3-

319-24033-6_33.

[26] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, “Speech

Synthesis Based on Hidden Markov Models,” Proc. IEEE, vol. 101, no. 5, pp. 1234–

1252, May 2013, doi: 10.1109/JPROC.2013.2251852.

[27] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with

Neural Networks,” arXiv:1409.3215 [cs], Dec. 2014, Accessed: Nov. 15, 2021.

[Online]. Available: http://arxiv.org/abs/1409.3215

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space,” arXiv:1301.3781 [cs], Sep. 2013, Accessed: Nov.

18, 2021. [Online]. Available: http://arxiv.org/abs/1301.3781

[29] J. Volkmann, S. S. Stevens, and E. B. Newman, “A Scale for the Measurement of

the Psychological Magnitude Pitch,” p. 7.

[30] “MicroFreak Vocoder Edition FLUENT IN CHAOS,” Arturia.

https://www.arturia.com/products/hardware-synths/microfreak-vocoder/overview

(accessed Aug. 12, 2021).

[31] “Artificial-Intelligence.”

https://dictionary.cambridge.org/pt/dicionario/ingles/artificial-intelligence

[32] M. H. Sazli, “A brief review of feed-forward neural networks,” Communications,

Faculty Of Science, University of Ankara, pp. 11–17, 2006, doi: 10.1501/0003168.

[33] J. Feng and S. Lu, “Performance Analysis of Various Activation Functions in

Artificial Neural Networks,” J. Phys.: Conf. Ser., vol. 1237, no. 2, p. 022030, Jun.

2019, doi: 10.1088/1742-6596/1237/2/022030.

[34] D. E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Backpropagation: The

Basic Theory,” p. 34.

45

[35] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the Gap to

Human-Level Performance in Face Verification,” in 2014 IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, OH, USA, Jun. 2014, pp.

1701–1708. doi: 10.1109/CVPR.2014.220.

[36] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural network

structures and optimization techniques for speech recognition,” in Interspeech 2013,

Aug. 2013, pp. 3366–3370. doi: 10.21437/Interspeech.2013-744.

[37] N. A. Ibraheem, M. M. Hasan, R. Z. Khan, and P. K. Mishra, “Understanding

Color Models: A Review,” vol. 2, no. 3, p. 12, 2012.

[38] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,”

arXiv:1511.08458 [cs], Dec. 2015, Accessed: Nov. 20, 2021. [Online]. Available:

http://arxiv.org/abs/1511.08458

[39] M. S. Al-Radhi, T. G. Csapó, and G. Németh, “Deep Recurrent Neural Networks

in Speech Synthesis Using a Continuous Vocoder,” in Speech and Computer, vol.

10458, A. Karpov, R. Potapova, and I. Mporas, Eds. Cham: Springer International

Publishing, 2017, pp. 282–291. doi: 10.1007/978-3-319-66429-3_27.

[40] P. J. Werbos, “Generalization of backpropagation with application to a recurrent

gas market model,” Neural Networks, vol. 1, no. 4, pp. 339–356, Jan. 1988, doi:

10.1016/0893-6080(88)90007-X.

[41] P. J. Werbos, “Backpropagation through time: what it does and how to do it,”

Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990, doi: 10.1109/5.58337.

[42] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent Advances

in Recurrent Neural Networks,” arXiv:1801.01078 [cs], Feb. 2018, Accessed: Nov.

21, 2021. [Online]. Available: http://arxiv.org/abs/1801.01078

[43] J.-M. Valin, “A Hybrid DSP/Deep Learning Approach to Real-Time Full-Band

Speech Enhancement,” arXiv:1709.08243 [cs, eess], May 2018, Accessed: Nov. 27,

2021. [Online]. Available: http://arxiv.org/abs/1709.08243

[44] A. Graves and J. Schmidhuber, “Framewise phoneme classification with

bidirectional LSTM and other neural network architectures,” Neural Networks, vol.

18, no. 5–6, pp. 602–610, Jul. 2005, doi: 10.1016/j.neunet.2005.06.042.

[45] R. McMunn, “Key Differences Between Brazilian and European Portuguese,”

mondly. https://www.mondly.com/blog/2019/01/01/differences-brazilian-european-

portuguese/ (accessed Nov. 21, 2021).

[46] J. P. Teixeira, D. Freitas, D. Braga, M. J. Barros, and V. Latsch, “Phonetic Events

from the Labeling the European Portuguese DataBase for Speech Synthesis,

FEUP/IPB-DB,” p. 5, 2001.

[47] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring the

Limits of Language Modeling,” arXiv:1602.02410 [cs], Feb. 2016, Accessed: Nov.

18, 2021. [Online]. Available: http://arxiv.org/abs/1602.02410

[48] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann

Machines,” p. 8.

[49] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:

10.1162/neco.1997.9.8.1735.

[50] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate,” arXiv:1409.0473 [cs, stat], May 2016, Accessed:

Nov. 27, 2021. [Online]. Available: http://arxiv.org/abs/1409.0473

[51] S. Choi, S. Han, D. Kim, and S. Ha, “Attentron: Few-Shot Text-to-Speech

Utilizing Attention-Based Variable-Length Embedding,” arXiv:2005.08484 [cs,

46

eess], Aug. 2020, Accessed: Nov. 27, 2021. [Online]. Available:

http://arxiv.org/abs/2005.08484

[52] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel Recurrent Neural

Networks,” arXiv:1601.06759 [cs], Aug. 2016, Accessed: Nov. 28, 2021. [Online].

Available: http://arxiv.org/abs/1601.06759

[53] J. Pons, S. Pascual, G. Cengarle, and J. Serrà, “Upsampling artifacts in neural

audio synthesis,” arXiv:2010.14356 [cs, eess], Feb. 2021, Accessed: Dec. 09, 2021.

[Online]. Available: http://arxiv.org/abs/2010.14356

[54] NVIDIA, “Tacotron 2 - PyTorch implementation with faster-than-realtime

inference.” https://github.com/NVIDIA/tacotron2

[55] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library,” arXiv:1912.01703 [cs, stat], Dec. 2019, Accessed: Dec. 05, 2021.

[Online]. Available: http://arxiv.org/abs/1912.01703

[56] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,” p. 21.

[57] R. Mama, “Tensorflow implementation of DeepMind’s Tacotron 2.”

https://github.com/Rayhane-mamah/Tacotron-2

[58] M. S. H. Al-Radhi, “High-Quality Vocoding Design with Signal Processing for

Speech Synthesis and Voice Conversion,” p. 123.

[59] J. Jensen and C. H. Taal, “An Algorithm for Predicting the Intelligibility of Speech

Masked by Modulated Noise Maskers,” IEEE/ACM Trans. Audio Speech Lang.

Process., vol. 24, no. 11, pp. 2009–2022, Nov. 2016, doi:

10.1109/TASLP.2016.2585878.

[60] Y. Wu et al., “Demystifying Learning Rate Policies for High Accuracy Training

of Deep Neural Networks,” arXiv:1908.06477 [cs, stat], Oct. 2019, Accessed: Nov.

29, 2021. [Online]. Available: http://arxiv.org/abs/1908.06477

[61] J. Ma, Y. Hu, and P. C. Loizou, “Objective measures for predicting speech

intelligibility in noisy conditions based on new band-importance functions,” J.

Acoust. Soc. Am., vol. 125, no. 5, p. 3387, 2009, doi: 10.1121/1.3097493.

[62] J. Kong, J. Kim, and J. Bae, “HiFi-GAN: Generative Adversarial Networks for

Efficient and High Fidelity Speech Synthesis,” arXiv:2010.05646 [cs, eess], Oct.

2020, Accessed: Dec. 09, 2021. [Online]. Available: http://arxiv.org/abs/2010.05646

[63] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A.

Bharath, “Generative Adversarial Networks: An Overview,” IEEE Signal Process.

Mag., vol. 35, no. 1, pp. 53–65, Jan. 2018, doi: 10.1109/MSP.2017.2765202.

[64] A. Łańcucki, “FastPitch: Parallel Text-to-speech with Pitch Prediction,”

arXiv:2006.06873 [cs, eess], Feb. 2021, Accessed: Dec. 09, 2021. [Online].

Available: http://arxiv.org/abs/2006.06873

