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Abstract

Neural vocoders are integral to the synthesis of high-quality speech in mod- ern Text-to-
Speech (TTS) systems, directly impacting naturalness, clarity, and adaptability. This thesis
investigates two novel approaches to enhance AutoVocoder performance: spectral processing
enhancement and FO-guided parallel architecture. The first approach employs advanced
data preprocessing techniques with log magnitude and sine-cosine phase representation,
alongside architectural refinements featuring ConvNeXtV2 blocks and separate phase
and magnitude encoders. Post-processing methods including spectral gating further
improve output quality. The second approach introduces an innovative FO-guided parallel
architecture that processes spectral components through dual paths: a main processing
path and an FO-masked path utilizing Gaussian masking around fundamental frequency
regions. These paths are enhanced with Convolutional Block Attention Modules (CBAM)
to improve feature extraction and are fused to create a robust representation of speech
characteristics. Both approaches are evaluated through objective and subjective metrics,
revealing complementary strengths. While the first approach shows im- proved spectral
accuracy, the FO-guided architecture demonstrates superior pitch-related performance and
robustness against noise. This comprehensive exploration contributes valuable insights for
developing more natural, efficient, and adaptable speech synthesis systems.



Kivonat

A neurdlis vokoderek alapvetd szerepet jatszanak a modern szoveg-beszéd (TTS) rendsz-
erek magas mindségli beszédszintézisében, kozvetleniil befolyd- solva a természetességet,
érthetOséget és alkalmazkoddképességet. Ez a dol- gozat az AutoVocoder teljesitményének
javitasara torekszik harom kritikus tényezére Osszpontositva: az adatok fejlett feldol-
gozasara, az architektira finomitasara és a valés koriilményekhez valé robusztussigra.
El6szor modern adat-el6feldolgozasi technikakat alkalmazunk, amelyek célja a beszéd
felbon- tasdnak javitasa és a zaj csOkkentése. Ez magaban foglalja a célzott normal- izalasi
modszereket, amelyek alapvet6 fontossaguak a szintézis pontossaganak novelésében. Ezutan
az AutoVocoder architekturajanak optimalizalasara kon- centralunk. Rétegkonfiguraciok
és paraméterek finomhangoldsaval végzett it- erativ modellmédositasok révén prébaljuk
novelni a hatékonysagot és cstkken- teni a szamitasi terhelést anélkiil, hogy az eredmény
minésége csokkenne. Végiil a rendszer robusztussidgat vizsgaljuk kiilonféle koriilmények,
példaul valtozo zajszintek és akcentusok mellett, hogy biztositsuk az allandé és kivald
mindségii beszédszintézist. Ez a dolgozat a TTS rendszerek fejlesztéséhez jarul hozza egy
strukturdlt megkozelitéssel, amely alkalmazkodobba, hatékonyabba és megbizhatobba teszi
ezeket a rendszereket kiilonb6z6 kornyezetekben torténd széleskorii alkalmazasra.

ii



Chapter 1

Introduction

1.1 Overview of Speech Synthesis

Speech synthesis and acoustic modeling have been a widely researched task, particularly
with recent advancements in the implementation of neural networks. The ability to convert
text into natural-sounding speech has deep implications in a lot of domains, notably virtual
assistants, accessibility tools, and entertainment.

Traditionally, mainstream Text-to-Speech (TTS) systems [31, 28, 60, 52| use mel-
spectrograms as an intermediate representation for encoding speech waveforms. Mel-
spectrograms provide a time-frequency representation that captures the main features of
audio signals, allowing more efficient processing and improved synthesis quality. However,
this conventional method is not without its limitations, prompting researchers to explore
alternative approaches.

A notable advancement in this area is the introduction of the AutoVocoder [60], which
represents a shift in how speech is encoded. Unlike traditional systems that rely on mel-
spectrograms, the AutoVocoder encodes speech using redundant audio features, thereby
emphasizing the importance of accurate encoding in learning better representations of
speech waveforms. This innovative approach demonstrates that the encoding techniques
based on redundant audio features yield results that surpass the quality and efficiency
of mel-spectrograms. The foundation of the AutoVocoder is built upon the principles of
autoencoders, a deep learning approach designed to learn efficient representations of data
through unsupervised learning. Autoencoders consist of two main components: an encoder
that compresses the input data into a lower-dimensional representation and a decoder that
reconstructs the original data from this compact representation.

However, despite its innovative structure, the AutoVocoder still faces several critical
limitations that affect its performance and the quality of its outputs. The first of these
limitations is related to preprocessing. The current preprocessing stage is not effective
enough in conditioning the input data for optimal encoding. As the quality of encoded
output is heavily dependent on the input, improving the preprocessing pipeline could
enhance both encoding efficiency and accuracy.

Second, there are architectural constraints that hinder the AutoVocoder’s ability to extract
complex patterns in the data. While ResNet is employed as the backbone model, its
architectural depth may not be sufficient for capturing the intricate nuances of speech.
Moreover, the current handling of real and imaginary components during encoding lacks



sophistication in representing phase and magnitude, suggesting that advanced methods
could lead to better performance.

Third, the model lacks explicit mechanisms to focus on pitch-related information, which
is crucial for natural-sounding speech. Fundamental frequency (FO0) plays a vital role in
conveying prosody and speaker characteristics, yet the baseline AutoVocoder processes all
frequency components equally without special attention to these critical regions.

Lastly, the absence of post-processing in the AutoVocoder presents a significant drawback.
Post-processing plays a critical role in refining the output, allowing for noise reduction,
error correction, and enhanced clarity. Without this phase, the AutoVocoder’s outputs are
more likely to retain noise and inaccuracies, lowering the overall quality of the synthesized
speech.

This thesis presents an evolutionary approach to address these limitations, we explored
several complex architectures including transformer-based models [57] and Vision Trans-
former [12] adaptations, but computational constraints guided us toward a more efficient
implementation that still incorporates attention mechanisms in a lightweight manner [62].

This thesis will explore the theoretical background of the existing AutoVocoder model,
detail enhancement approaches, present their implementations, evaluate their performance,
and discuss implications for future research.

1.2 Background and Related Work

1.2.1 AutoEncoder

An autoencoder is a type of neural network approach used for unsupervised learning
and dimensionality reduction [4]. Its primary goal is to encode input data into a lower-
dimensional representation called the latent space and then reconstruct the original input
from this compressed representation. The autoencoder consists of two main components:

1. Encoder: Maps the input data to a latent representation.

2. Decoder: Reconstructs the input from the latent representation.

Autoencoders work by learning a compressed representation of the input data through an
encoding process, which captures the essential features of the input in a lower-dimensional
space. This compressed representation is then decoded back into the original input space
by the decoder network. The network is trained to minimize the reconstruction error,
typically using techniques like backpropagation [51] and gradient descent, to ensure that
the output closely matches the input.

The main advantages of autoencoders architecture is that they do not require labeled data
for training (unsupervised learning), and they can automatically learn meaningful features
from the input data [35] which will be be very beneficial for tasks such as ours.
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Figure 1.1: Basic architecture of an autoencoder showing input
data (z) being compressed into a latent representation (h) by the
encoder and then reconstructed by the decoder (z')

1.2.2 AutoVocoder Overview

Most state of art vocoders such as HiFi-GAN [31] and WaveNet [55] use the mel-spectrogram
to encode audio data, however the AutoVocoder uses a novel approach, consisting of applying
a differentiable variation of Short Time Fast Fourier transform to break the audio into
redundant spectral features: phase, magnitude, real and imaginary [60]. Providing these
features allows this model to learn better representation of our audio data, instead of
imposing an already established representation. For example, some features like phase
could be more efficiently represented given the magnitude spectrogram [56].
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Figure 1.2: Overview of the AutoVocoder architecture showing the
processing pipeline from audio waveform through spectral features
to latent representation and back to audio

Feature Engineering: Using a differentiable version of short term Fourier transform [2] in
PyTorch [48], the audio waveform is represented as a spectrogram, this spectrogram is then
divided to two spectrograms, real and imaginary, these two spectrograms are then used to
constructs the phase and magnitude spectrograms according to the following equation:

magnitude = \/Z(Re(5)2 + Im(S)? 4 1079) (1.1)

phase = arg(S) (1.2)

The four spectrograms for real, imaginary, phase and magnitude are then stacked together
alongside the channels dimension, obtaining a tensor of a shape: (B,4,N,T), where: B is
the batch size, 4 is the number of channels, N is the number of frequency bins, T is the
number of time frames. This tensor is then fed to the encoder.

Encoder: The encoder is based on a Residual Network or ResNet [18], which is a deep
learning architecture that has been widely used for image classification tasks. It was
introduced by Kaiming He et al. in 2015 and has since become one of the most popular
models in the field of computer vision. The key innovation of ResNet is the introduction of
residual blocks, which allow the network to learn residual functions with reference to the
layer inputs, instead of learning unreferenced functions [18]. The AutoVocoder implements
a ResNet where each residual block consists of two 2D convolutional layers of width 3,
followed by a 2D batch normalization [24] and a ReLU [1] nonlinearity. The network consists
of 11 such blocks, the first five having 4 input and output channels, the middle one having
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Figure 1.3: Structure of a basic ResNet block showing the residual
connection that allows gradients to flow directly through the network

4 input channels but 1 output channel, with the remaining 5 blocks having 1 channel in
and out. The output tensor with one channel is then fed to a linear layer that transforms
it into its latent dimension.

Decoder: The Decoder follows a mirrored architecture, after decoding the latent repre-
sentation into the original 4 channels, it reconstruct the waveform in one of the following
three methods:

e Cartesian: the four channel-tensor is forwarded through a 2d convolution that
outputs two channels, considered as real and imaginary, these two features are used
to reconstruct the waveform using the inverse Short-Time Fourier Transform [16]:

y = iSTFT(real + j x imaginary) (1.3)

e Polar: the same procedure as Cartesian, however the 2 outputted channels are
considered as magnitude and phase, and used to reconstruct the waveform:

y = iSTFT(magnitude » ePhse*7)) (1.4)

e Both: 4 channels are used reconstruct the audio, by calculating polar and cartesian
representations, and averaging them to obtain the input to the iSTFT.

Discriminators: The AutoVocoder also includes discriminators that are used to differenti-
ate between real and generated audio samples, following the adversarial training paradigm
introduced by Generative Adversarial Networks [15]. Discriminators are neural network
components designed to evaluate the authenticity of audio outputs by learning to identify
the characteristics of real audio data. Their primary purpose is to provide feedback to
the generator during training, helping it improve the quality of synthesized audio. By
distinguishing subtle differences between real and fake audio, discriminators guide the



generator to produce more realistic outputs. There are two types of discriminators designed
to evaluate the generated audio against real audio:

o Multi-Period Discriminator: This discriminator uses multiple instances (with
varying periods) to analyze audio. Each instance processes the audio with different
temporal resolutions, allowing it to capture patterns and details across various time
scales. It consists of several convolutional layers designed to gradually extract features
from the input audio. The output is a flattened representation that helps differentiate
between real and generated audio.

e Multi-Scale Discriminator: This discriminator operates at different scales by
using average pooling layers to downsample the audio before passing it through its
convolutional layers. It consists of multiple instances that analyze audio at various
resolutions, enabling it to recognize both fine and coarse features. This design
enhances its ability to detect subtle differences between real and synthesized audio.

Losses and Backpropagation:

o Discriminator Losses: The two discriminators (MPD and MSD) aim to distinguish
real audio from generated audio. The loss here measures how well each discriminator
can tell the real from the fake, with the total loss being the sum of both discriminators’
performance.

e Generator Losses: The generator uses several losses:

— Mel-Spectrogram Loss: Ensures the generated audio’s spectrogram matches
the real audio’s spectrogram, computed using techniques from mel-frequency
analysis [10].

— Waveform Loss: Compares the actual waveforms of real and generated audio to
make them similar.

— Feature Matching Loss: Encourages the generator to match the internal features
(extracted by the discriminators) of real and generated audio.

— Adversarial Loss: Helps the generator improve by trying to "fool" the discrimi-
nators into classifying the generated audio as real [15].

1.3 Research Objectives and Approaches

This thesis explores two distinct approaches for enhancing the AutoVocoder while maintain-
ing its core principles of waveform representation learning via an autoencoder framework
with adversarial loss. Each approach addresses specific limitations of the baseline model
through different architectural and processing strategies.

Both approaches share some common preprocessing techniques and evaluation method-
ologies but differ substantially in their core architectural designs and feature extraction
mechanisms. The following chapters will detail each approach individually, providing a
comprehensive analysis of their design, implementation, and performance.

1.3.1 First Approach: Spectral Processing Enhancement

The first approach focuses on improving data representation, architectural design, and
output refinement through:



1. Implementing advanced preprocessing techniques including log magnitude and sine-
cosine phase representation

2. Redesigning the AutoVocoder architecture with ConvNeXtV2 [63] blocks and separate
phase and magnitude encoders

3. Applying post-processing methods such as spectral gating to improve the synthesized
audio quality

1.3.2 Second Approach: F0-Guided Parallel Architecture

The second approach introduces a novel architecture that explicitly leverages fundamental
frequency information:

1. Utilizing phase, magnitude, and power spectrums as comprehensive input representa-
tions

2. Implementing parallel processing paths: a main path for general spectral processing
and an F0-masked path with Gaussian masking around fundamental frequency regions

3. Enhancing residual blocks with Convolutional Block Attention Modules (CBAM) to
improve feature extraction

4. Employing feature fusion techniques to combine information from both processing
paths



Chapter 2

Spectral Processing Enhancement

This chapter details the first approach to enhancing the AutoVocoder, which focuses on
spectral processing improvements through architectural refinements and improved data
representation. This approach was published in WINS3 conference [34], and served as a
foundation for the more advanced FO-guided architecture presented in the next chapter.

2.1 Approach Overview and Motivation

The baseline AutoVocoder, while innovative in its approach to speech synthesis, presents
several limitations that affect the quality of synthesized speech. The most significant
limitations relate to its representation of spectral features and the architectural design that
processes these features. This approach addresses these limitations through three main
innovations:

1. Advanced preprocessing techniques that better represent phase and magnitude infor-
mation

2. Architectural refinements with specialized encoders for different signal components

3. Effective post-processing to enhance the quality of the synthesized audio

The fundamental insight driving this approach is the recognition that phase and magnitude
are fundamentally different representations of audio signals, each conveying distinct aspects
of the speech signal. By treating them separately in the architecture, we can potentially
achieve better representation and reconstruction of both components, leading to higher
quality synthesized speech.



2.2 Feature Engineering

. Log

) STFT,
Audio Waveform Spectrogram

=

cosine

Figure 2.1: Waveform Representation and Processing Pipeline
showing the transformation from raw audio to specialized represen-
tations for phase and magnitude

e Log Magnitude In the baseline AutoVocoder, linear magnitude is used to represent
the magnitude spectrogram of the audio signal. However, after careful consideration,
the log magnitude was chosen for this study. Log magnitude provides several
advantages over linear magnitude, particularly for neural networks, as it compresses
the dynamic range of the audio signal, making it easier for the model to learn more
details while maintaining the overall structure of the audio.

The human auditory system itself perceives sound intensity logarithmically rather
than linearly [53], making log-magnitude a more perceptually relevant representation.
Additionally, log-magnitude helps balance the contribution of high-energy and low-
energy components in the frequency spectrum, preventing the model from overly
focusing on high-energy components at the expense of perceptually important low-
energy components.

The log-magnitude transformation is computed as:

Xioy = log(|X| +¢) (2.1)

where |X| is the magnitude of the complex spectrogram obtained via Short-Time
Fourier Transform (STFT) [2], and e is a small constant (typically 10~°) to avoid
taking the logarithm of zero.

« Sine-Cosine Phase Representation An approach that was explored involved
encoding the phase information using a sine-cosine representation, which is particularly
useful in this application since it ensures a continuous periodic encoding and helps
capture cyclical/periodic patterns. It may improve the model’s understanding of
sequential /temporal data and its ability to capture phase-related features, as phase
plays a significant role in determining the timing and tonal quality of speech [41, 59].



Traditional phase representation suffers from discontinuities at the —m to m boundary,
which can make learning difficult for neural networks [46]. By representing phase as
sine and cosine components, we avoid these discontinuities and provide a continuous
representation that better captures the periodic nature of phase information.

The sine-cosine phase representation is computed as follows:

_ Re(X)
cos(¢p) = X te (2.2)

) _ Im(X)
sin(¢) = X|+e (2.3)

where Re(X) and Im(X) are the real and imaginary parts of the complex spectrogram,
respectively, and ¢ is added for numerical stability.

The combination of these preprocessing techniques results in a rich set of input features
for the model. The input tensor has the following components:

1. Real part of the complex spectrogram

2. Imaginary part of the complex spectrogram

3. Log magnitude

4. Cosine of the phase

5. Sine of the phase
These five channels provide a comprehensive representation of the speech signal, capturing
both the traditional real-imaginary components and the specialized log-magnitude and

sine-cosine phase components. This redundancy in representation allows the model to learn
which features are most useful for different aspects of speech reconstruction.

2.3 Proposed Encoder Architecture

The implemented encoder architecture includes the inclusion of several elements that focus
on processing the spectral components in a specialized manner, Figure 2.2 demonstrates
these components, and will be detailed in the next subsections.

10
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2.3.1 Replacing ResNet with ConvINeXtV2

The baseline AutoVocoder architecture utilized ResNet as the backbone for feature extrac-
tion. However, it was determined that ResNet did not provide the required depth and
flexibility for capturing complex speech patterns. Therefore, ConvNextV2 [63], a modern
architecture known for its superior performance in image and audio tasks, was adopted.
ConvNeXt represents a modernization of the traditional ConvNet design [38], incorporating
lessons learned from Vision Transformers while maintaining the efficiency of convolutional
operations.

Depth-wise| [BatchNorm| | Point-wise Point-wise | , A
Input }
@_) Conv2d i 2d M convad GELU A GRN Conv2d |\

1
N>

Figure 2.3: ConvNeXtV2 block Architecture showing the sequence
of operations

ConvNeXtV2 incorporates several advancements over traditional ResNet blocks, These
improvements allow ConvNeXtV2 to capture more complex patterns in the speech signal
while maintaining computational efficiency:

e Depth-wise convolution: applies a separate filter to each input channel
independently[7]. This means each filter only interacts with one channel, not all of
them, it will serve as a computation efficiency enhancement in the case of multi-
channel tensor. By separately processing each input channel, depth-wise convolutions
reduce the number of parameters and computational complexity while still capturing
spatial patterns within each feature channel.

e Batch Normalization: Batch Norm 2D serves to stabilize and accelerate the
training of the model by normalizing activations, mitigating internal covariate shifts,

11



and improving gradient flow [24]. It normalizes the output of the preceding layer
by calculating the mean and variance across the batch dimension, applying the
normalization, and then learning a scaling and shifting parameter for each channel.

e Point-wise convolution: a 2d convolution with a 1x1 kernel, it serves primarily to
mix information across channels, reduce dimensionality, and enhance feature learning
in CNNs. After depth-wise convolutions process each channel independently, point-
wise convolutions combine information across channels, allowing for cross-channel
interactions and feature synthesis.

e GELU: this activation function outputs a scaled version of the input based on
its probability under a Gaussian distribution [19]. While ReLU is computationally
efficient and simple to implement, Gaussian Error Linear Unit offers advantages in
terms of:

— Smooth non-linearity, reducing the risk of dead neurons.
— Gradient flow, enhancing training stability.

— Better modeling of complex relationships due to its non-monotonic nature.

e GRN: The Global Response Normalization layer effectively normalizes the output
of the preceding layer by computing a global response normalization, scaling and
shifting it with learnable parameters, and maintaining a residual connection. It helps
calibrate feature responses across different channels, enhancing the model’s ability to
focus on the most salient features.

The application of ConvNeXtV2 block is similar to what was used in BiVocoder [13],
however instead of 1D convolution, 2d convolution is used, in addition to keeping Batch
Normalization instead of adopting Layer normalization that is conventionally used in
ConvNeXtV2 block architecture.

2.3.2 Separate Phase and Magnitude Encoders

A key advancement in the first approach is the introduction of separate encoders for phase
and magnitude. This design recognizes that phase and magnitude are fundamentally
distinct representations of a speech signal, each containing unique information critical to
understanding and reconstructing speech effectively.

The concept of specialized encoders represents a significant departure from the baseline
AutoVocoder, which processes all components through the same network. This specialization
allows each encoder to develop feature extractors that are optimized for the particular
characteristics of its input, potentially leading to better overall representation of the speech
signal.

e« Phase Encoder: This component is specifically designed to extract temporal

and phase-related information from the audio input. It focuses on the timing and
progression of sound waves, capturing how they change over time.
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Figure 2.4: Detailed architecture of the Phase Encoder showing
the processing of sine-cosine phase representations through a series
of ConvNeXtV2 blocks

This encoder is adept at discerning subtle variations in timing that are crucial for
phonetic distinctions and speech clarity. By isolating phase information, the Phase
Encoder enhances the system’s ability to track rapid changes in speech patterns, thus
ensuring that the timing aspects, which are essential for natural speech perception,
are preserved The Phase Encoder processes the sine-cosine representation of phase
through a cascade of ConvNeXtV2 blocks. The architecture begins with several
blocks that maintain the two-channel input (sine and cosine components) before
gradually reducing to a single channel. This gradual reduction allows the network to
learn combinations of sine and cosine components that efficiently represent phase
information. The phase information is particularly important for preserving the
timing of speech events, such as the rapid transitions between phonemes and the
temporal structure of consonants. By dedicating a specialized encoder to phase
information, we aim to better capture these critical timing aspects of speech.

Magnitude Encoder In contrast, the Magnitude Encoder’s mainly focuses on
the spectral features of the speech signal. It analyzes the amplitude of the sound
waves across various frequencies, effectively encoding the energy distribution that
contributes to the timbre and intensity of the audio. This encoder specializes in
identifying the harmonic content and frequency characteristics, which are necessary
for distinguishing different phonemes. By focusing exclusively on magnitude, the
Magnitude Encoder can optimize the extraction of features that characterize the
loudness and frequency content of speech. The Magnitude Encoder processes the
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log-magnitude representation through a series of ConvNeXtV2 blocks, all maintaining
a single-channel structure. This consistent channel dimension allows the network
to focus on extracting patterns within the magnitude spectrum without needing to
handle channel-wise transformations. Magnitude information is crucial for capturing
the spectral envelope of speech, which defines the overall timbre and identity of
speech sounds. The formant structure, harmonic content, and energy distribution
across frequencies all contribute to the intelligibility and naturalness of synthesized
speech. By dedicating a specialized encoder to magnitude information, we aim to
better capture these spectral characteristics of speech.

e e e e e e e e e ——— = == = =l
! |
|
Log ConvNeXtV2 ConvNeXtV2 ConvNeXtv2 | ! Encoded
magnitude I Block Block Block I Magnitude
' |
L e J

Input Channels: 1
Output Channels: 1

Figure 2.5: Detailed architecture of the Magnitude Encoder show-
ing the processing of log magnitude representations through a series
of ConvNeXtV2 blocks

The separation of these two encoders allows each to specialize in extracting their respective
features more effectively. This specialization may lead to a potentially improved performance
in encoding, as each encoder can utilize tailored algorithms and techniques suited to the
specific characteristics of phase and magnitude. As a result, the system is capable of
achieving more accurate reconstruction of speech, enhancing intelligibility and naturalness
in synthesized speech outputs.

The Phase Encoder focuses on temporal aspects and the rapid transitions that characterize
consonants and other time-dependent speech features. Meanwhile, the Magnitude Encoder
captures the spectral envelope, formant structure, and energy distribution that define vowels
and the overall timbre of speech. Together, they provide a comprehensive representation of
the speech signal that captures both its temporal and spectral characteristics.

2.3.3 Unified Encoding of the Spectral Representations

Once the phase and magnitude have been independently encoded, their outputs are
integrated through a Unified Encoder. This module combines the distinct outputs from
both encoders, in addition to real and imaginary channels of the linear spectrogram. The
output is then fed to a linear layer to obtain a cohesive representation of the speech signal.

The Unified Encoder plays a crucial role in maintaining the integrity of the speech signal
by ensuring that both temporal (phase-related) and spectral (magnitude-related) aspects
are preserved and represented harmoniously. It effectively bridges the gap between the two
domains, allowing the system to leverage the strengths of both encoders while compensating
for any limitations inherent in treating phase and magnitude separately.
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Figure 2.6: The Unified Encoder architecture showing how separate
phase and magnitude information is integrated with the original real
and imaginary components to form a comprehensive representation

The inclusion of the original real and imaginary components in this unified representation
provides a reference point for the model, allowing it to compare the specialized represen-
tations from the Phase and Magnitude Encoders with the original complex spectrogram.
This redundancy helps the model learn which representations are most useful for different
aspects of speech reconstruction.

2.4 Proposed Decoder

lDemded Phase
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Phase decoder —»I Phase W
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[
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Unified
Decoder

Linear

Decoded log
magnitude

Figure 2.7: Complete decoder architecture showing the mirrored
structure with specialized phase and magnitude decoders that recon-
struct their respective components from the latent representation

The decoder implements a mirrored architecture to ensure effective signal reconstruction.
The process begins with the latent representation being expanded through a linear layer
to match the required dimensionality. This expanded representation is then processed
through a unified decoder that gradually reconstructs the combined features. The unified
decoder’s output is subsequently split and forwarded to specialized phase and magnitude
decoders. These dedicated decoders are designed to accurately reconstruct their respective
components while maintaining the intricate relationships between phase and magnitude
information.

The phase decoder pays particular attention to reconstructing the sine and cosine com-
ponents, ensuring accurate phase reconstruction without discontinuities. Meanwhile, the
magnitude decoder focuses on preserving the spectral envelope and energy distribution
of the original signal. This specialized approach allows for more precise reconstruction
of both components, leading to higher quality synthesized audio. The output phase and
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log magnitude are then used to synthesize the waveform, using the polar iSTFT [29]
implementation.

The specialized decoders mirror the encoders in their focus, with the Phase Decoder
specifically designed to accurately reconstruct phase information from the latent represen-
tation, and the Magnitude Decoder focused on reconstructing the spectral envelope and
energy distribution. This mirrored approach ensures that the information captured by the
specialized encoders can be effectively utilized during the reconstruction process.

The entire encoder-decoder architecture is designed to maintain the advantages of both
global and local feature processing while allowing for component-specific optimization.
The use of CNBlocks throughout most of the architecture provides improved gradient
flow and feature extraction capabilities compared to traditional ResBlocks, while the
strategic placement of dimensionality reduction and expansion ensures efficient information
processing without significant loss of critical audio features.

2.5 Proposed Post-Processing Procedure

While architectural improvements are essential for enhancing speech synthesis quality,
post-processing techniques can further refine the output, addressing any remaining artifacts
or imperfections. Several post-processing techniques were implemented as part of the
Spectral Processing Enhancement approach.

2.5.1 Spectral Gating

For this enhancement, removing unwanted frequencies was essential due to a common limi-
tation in the baseline autovocoder’s synthesis process. While the AutoVocoder successfully
generates high quality speech, it tends to produce output with higher amplitude than the
original speech signals. This amplification inadvertently affects not just the desired speech
components but also magnifies any background noise present in the signal.

To address this issue, we implemented spectral gating through the noise reduce [33]
implementation. Spectral gating operates on the principle of analyzing the frequency
spectrum of the audio signal and applying an adaptive threshold to separate speech from
noise components [61]. The process can be broken down into several key steps:

1. Noise Profile Estimation: The algorithm first estimates the noise profile from
portions of the signal where speech is absent, this creates a statistical model of the
background noise’s spectral characteristics. This is typically done by analyzing frames
at the beginning or end of the audio where speech is less likely to be present.

2. Threshold Determination: Based on the noise profile, the algorithm calculates
frequency-dependent thresholds, these thresholds determine which spectral compo-
nents should be preserved or attenuated. The threshold is typically set as a function
of the noise profile, often scaled by a factor that determines the aggressiveness of the
noise reduction.

3. Spectral Gate Application: The signal is transformed into the frequency domain
using Short-Time Fourier Transform (STFT). Frequency components below the
calculated threshold are attenuated, while components above the threshold, likely
corresponding to speech, are preserved. The attenuation is typically applied as a
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gain factor that varies smoothly across frequencies to avoid introducing musical noise
or other artifacts.

4. Signal Reconstruction: The processed spectrum is transformed back to the time
domain using inverse STEFT [16], the result is a cleaner signal with reduced background
noise while maintaining speech intelligibility. Overlap-add techniques are used to
ensure smooth transitions between frames.

The spectral gating process can be formally described as:

Y(fat) = X(fat) G(fvt) (24)

where X (f,t) is the original spectrogram, G(f,t) is the gain function determined by the
spectral gate, and Y (f,t) is the processed spectrogram. The gain function is typically
computed as:

1, if|X(f,t) >a-N(f)

2.5
B, otherwise (2:5)

G(f.t) = {

where N (f) is the estimated noise profile, « is a scaling factor that determines the threshold,
and [ is the attenuation factor applied to components below the threshold. This approach
builds upon classical spectral subtraction methods [14] but with adaptive thresholding for
better performance.

2.5.2 Additional Post-processing

In addition to spectral gating, several other post-processing techniques were applied to
further enhance the quality of the synthesized speech:

DC Offset Removal: Removes any constant electrical offset in the audio signal. This
is important because DC offset can cause unnecessary power consumption and reduce
the headroom for the actual audio signal. Having no DC offset means the audio signal is
properly centered around zero. DC offset removal is implemented as:

N—

yln] = 2ln] — - 3 i (26)

1=

[asy

where z[n] is the input audio signal, N is the length of the signal, and y[n] is the output
signal with DC offset removed.

Peak Normalization: Adjusts the overall volume of the audio to optimize its amplitude.
Ensures the loudest part of the audio uses the full available dynamic range without clipping,
making different audio recordings consistent in terms of maximum volume level. Peak
normalization is implemented as:

— -t t_ level 2.
—rpy arget_leve (2.7)

yln] =
where z[n] is the input audio signal, max(|z|) is the maximum absolute amplitude of the

signal, target_level is the desired peak level (typically 0.95 to leave some headroom), and
y[n] is the normalized output signal.
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2.6 Implementation Details

The Spectral Processing Enhancement approach was implemented using PyTorch, with a
focus on optimizing the architectural components for speech synthesis.

2.6.1 Phase and Magnitude Encoders

The Phase Encoder processes the sine-cosine representation of phase through a series
of ConvNeXtV2 blocks. The number of blocks and their configuration were determined
through empirical testing to provide optimal performance while maintaining computational
efficiency.

The architecture of the Phase Encoder follows this structure:

Algorithm 1 Phase Encoder Construction

1: function BUILDPHASEENCODER
2: phase__encoder < Empty ModuleList
> First set of blocks maintain channel dimension

3: for i =0 to 2 do
4: phase__encoder.add(C N Block(input__channels = 2, output__channels = 2))
5: end for

> Transitional block reduces channel dimension

6: phase__encoder.add(C N Block(input__channels = 2, output__channels = 1))

> Final set of blocks process with reduced dimensionality

for i =0to 2 do
phase__encoder.add(C' N Block(input__channels = 1, output__channels = 1))
9: end for
return phase__encoder

10: end function

Similarly, the Magnitude Encoder processes the log magnitude representation through a
series of ConvNeXtV2 blocks:

Algorithm 2 Magnitude Encoder Construction

1: function BUILDMAGNITUDEENCODER
2: magnitude__encoder < Empty ModuleList
> Series of blocks with consistent dimensionality

3: for i =0 to 4 do

4: magnitude__encoder.add(C' N Block(input__channels = 1, output__channels =
1)

5: end for

return magnitude__encoder
6: end function

The Unified Encoder combines the outputs from the Phase and Magnitude Encoders along
with the original real and imaginary components of the STF'T. This combined representation
is then processed through additional ConvNeXtV2 blocks before being projected to the
latent space.
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Algorithm 3 Unified Encoder Forward Pass

1. function UNIFIEDENCODERFORWARD (phase__features, magnitude__features,

N

o

10:
11:
12:

13:

real__imag__components) > Combine features from various sources

combined__features < Concatenate([phase__features,
magnitude__features,
real__imag__components))
> Process through unified encoder blocks
for i =0 to 6 do
combined__features «<— CNBlock(combined__features,
input__channels = 5,
output__channels = 5)
end for
> Final dimensionality reduction
reduced__features < CNBlock(combined__features,
input__channels = 5,
output__channels = 1)
> Project to latent space
latent__representation < LinearProjection(reduced__features)
return latent_representation

14: end function

2.6.2 Proposed Decoder Implementation

The decoder mirrors this architecture but in reverse, expanding the latent representation
and eventually splitting it into separate paths for phase and magnitude reconstruction:

Algorithm 4 Decoder Forward Pass

1: function DECODERFORWARD (latent__representation) > Expand latent representation

2:

10:

expanded__features « LinearExpansion(latent__representation)
> Process through unified decoder blocks
for each block in unified_decoder_blocks do
expanded__features < block(expanded__features)
end for
> Split into separate paths for phase and magnitude
phase__reconstruction_ input, magnitude_ reconstruction__input
SplitFeatures(expanded__features)
> Process through specialized decoders
phase__reconstruction < PhaseDecoder(phase__reconstruction__input)

magnitude__reconstruction <— MagnitudeDecoder(magnitude__reconstruction__input)

> Generate waveform using polar iSTFT
wave form <— PolarISTFT (magnitude_ reconstruction, phase_ reconstruction)
return wave form

11: end function

2.7 'Training Methodology

The Spectral Processing Enhancement model was trained using the LJSpeech 1.1 Dataset
[25], which consists of approximately 13,100 short audio clips of a single female speaker
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reading passages from 7 non-fiction books. The total audio length is over 24 hours, making
it ideal for text-to-speech model training and evaluation.

Training was conducted with the following hyperparameters:
o Optimizer: AdamW [29]
o Learning rate: 0.0002
o Batch size: 16
e Betal: 0.8
o Beta2: 0.99
o Weight decay: 0.01

o Training steps: 400,000

The loss function combined adversarial loss, feature matching loss, mel-spectrogram loss,
and waveform loss, weighted appropriately to ensure balanced optimization of all speech
aspects.

2.7.1 Model Size

The Spectral Processing approach introduces additional parameters compared to the
baseline AutoVocoder due to its specialized encoders and more complex architecture. Table
2.1 presents a breakdown of the model parameters.

Table 2.1: Spectral Processing Model Parameter Count Compared to Baseline

Model Component Parameters % of Total Baseline Params Change (%)
Encoder (Combined) 148,851 0.19% 132,463 +12.37%
Generator 149,404 0.19% 132,803 +12.49%
Multi-Period Discriminator 45,216,347 58.0% - -
Multi-Scale Discriminator 32,580,703 41.8% - -
Total Model Parameters 78,095,305 100% 265,266 -

Despite the increased parameter count compared to the baseline AutoVocoder, the ma-
jority of parameters remain in the discriminator components. The actual encoder and
generator, which are used during inference, contain relatively few parameters and remain
computationally efficient.

2.8 Evaluation Metrics

2.8.1 Objective Metrics
We employed five objective metrics to assess the quality of synthesized speech, these metrics

include root mean square error of logarithmic amplitude spectra (LAS-RMSE), RMSE of
FO (FO-RMSE), and voice/unvoiced (V/UV) error.
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o Signal-to-Noise Ratio (SNR): Measures signal clarity, with higher values indicat-
ing clearer speech with less noise.

. ZtT:1 95(75)2
SN = 1000 (z& (w(t) - f(t»z) 28

o Log-Amplitude Spectrum Root Mean Square Error (LAS-RMSE): Evaluates
spectral accuracy, with lower values indicating better spectral reproduction.

F

LAS-RMSE — J %Z (loglA(H)| ~ toglA(f)])” (2.9)

o FO Root Mean Square Error (FO-RMSE): Measures pitch accuracy, with lower
values indicating better reproduction of intonation patterns.

T

FO-RMSE = $ %Z (FO(t) — F’o(t))g (2.10)

t=1

» Voiced/Unvoiced Error (V/UV Error): Assesses voicing classification accuracy
with lower values indicating better distinction between voiced and unvoiced speech
segments.

1 & .
Error = LG ERY0] (2.11)

These metrics were consistently implemented using the same methodology across all model
evaluations to ensure fair comparison.

2.8.2 Subjective Evaluation Methods

The subjective evaluation of thisapproach we utilized MOSNet [39] for automated prediction
of Mean Opinion Scores on a scale from 1 to 5. This provides a consistent methodology for
comparing perceptual quality across all models.

2.9 Evaluation Results

2.9.1 Objective Evaluations Results

The Spectral Processing Enhancement approach was evaluated using several objective
metrics to assess different aspects of speech quality. Table 2.2 presents these results in
comparison to the baseline AutoVocoder.

Table 2.2: Objective Evaluation Results for Spectral Processing Approach

SNR(dB) 1 LAS-RMSE (dB) | V/UV Error (%) . FO-RMSE(Hz)

Baseline AV 2.42 19.33 3.84 4.81
Spectral Processing 1.92 12.20 2.85 3.50

These results demonstrate several important findings:
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e Spectral Accuracy: The Spectral Processing approach achieved a LAS-RMSE of
12.20 dB, showing a notable 36.9% improvement over the baseline (19.33 dB). This
confirms that the separate processing of magnitude and phase components leads to
better spectral representation.

e Pitch Accuracy: The FO-RMSE showed a significant 27.2% reduction from 4.81
Hz (baseline) to 3.50 Hz, indicating better preservation of fundamental frequency
information despite not explicitly modeling FO.

» Voicing Classification: The V/UV error rate decreased from 3.84% to 2.85%,
representing a 25.8% improvement in correctly identifying voiced and unvoiced
segments.

e Signal-to-Noise Ratio: The SNR showed a modest decrease from 2.42 dB to 1.92
dB. This trade-off likely results from the model prioritizing spectral accuracy and
pitch preservation over raw signal fidelity.

2.9.2 Subjective Evaluation

For subjective evaluation, we employed MOSNet [39], a neural network-based model trained
to predict human Mean Opinion Scores for speech quality. Table 2.3 shows these results.

Table 2.3: Subjective Evaluation Results for Spectral Processing Approach (MOS)

Score 1
Baseline 3.01
Spectral Processing 3.07
Original 3.11

The subjective evaluation results confirm that the Spectral Processing approach achieves
higher perceived quality than the baseline (3.07 vs. 3.01). This improvement, while modest,
is significant considering the challenging task of matching human-level speech quality.

2.10 Limitations and Insights for Further Improvement

While the Spectral Processing Enhancement approach demonstrated improvements over
the baseline AutoVocoder, several limitations and insights emerged during development
and evaluation:

e Lack of Explicit Pitch Modeling: Despite improved FO-RMSE compared to the
baseline, the approach does not explicitly model pitch information, which is crucial
for natural-sounding speech, particularly for expressive or emotional speech.

o Integration Challenges: The separate phase and magnitude encoders provide
specialized processing, but their integration in the unified encoder may not be optimal,
potentially losing some of the benefit of specialization.

o Parameter Efficiency: While effective, the approach increases the parameter
count compared to the baseline, which could be problematic for deployment in
resource-constrained environments.
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e Limited Context Integration: The approach processes each time-frequency bin
relatively independently, potentially limiting its ability to capture long-range depen-
dencies or contextual information in speech.

These limitations and insights informed the development of the second approach, the FO-
Guided Parallel Architecture, which builds upon the concept of specialized processing while
addressing these specific limitations through explicit pitch modeling and context-aware
attention mechanisms.

2.11 Transition to the FO-Guided Approach

The Spectral Processing Enhancement approach demonstrated the value of specialized
processing for different components of speech signals. This key insight; that different
aspects of speech require different types of processing; serves as a foundation for the
F0-Guided Parallel Architecture presented in the next chapter.

While the Spectral Processing approach separated phase and magnitude processing, the
FO0-Guided approach takes this concept further by creating specialized processing paths
for different frequency regions based on pitch information. This represents a natural
evolution of the core idea of specialization, moving from component specialization (phase
vs. magnitude) to frequency-region specialization (pitch-relevant vs. general).

The F0O-Guided approach also addresses several of the limitations identified in the Spectral
Processing approach, particularly the lack of explicit pitch modeling. By directly incorpo-
rating fundamental frequency information into the architecture, the FO-Guided approach
aims to achieve even better performance on pitch-related aspects of speech, which are
critical for natural-sounding synthesis.
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Chapter 3

F0-Guided Parallel Architecture

3.1 Approach Overview

Initial experiments with simple FO concatenation showed limited improvement. The key
insight is that even though the fundamental frequency information is crucial for speech
synthesis, it still requires architectural support to be effective. Building around the insights
from the spectral processing approach, our design for the encoding processing focuses on:

o Explicit Modeling of Pitch: Feature extraction guided by the FO

e Specialized Processing Pathways: Dedicated paths for different speech signal
aspects; main path processing all frequency components, and a specialized path
focusing on frequency regions around the fundamental frequency

e Adaptive Attention: Focus on the most informative aspects of the signal

The reason why we are focused on implementing this feature is because it determines
perceived pitch and carries information related to:

» Sentence level intonation: Rising for questions, falling for statements [37]

e Word level stress: Emphasizing important words

e Emotional content: Expressing emotions through pitch variations

Speaker identity: Contributing to voice characteristics [32]

e Linguistic features: Carrying tonal distinctions in many languages

Many systems, including the baseline AutoVocoder, rely on neural networks to implicitly
capture pitch, leading to imprecise reproduction. Our FO Guided approach explicitly
incorporates FO information for more accurate pitch modeling and natural speech synthesis.
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3.2 Input Representation and FO Processing
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Figure 3.1: FO Data Flow Within the Architecture showing how
pitch information is extracted and incorporated into the model
through Gaussian masking

In this approach, we utilize three primary spectral components as input: phase spectrum,
magnitude spectrum, and power spectrum. The selection of these three components
was based on their complementary nature. While there is some redundancy between
these representations (the power spectrum is the square of the magnitude spectrum), this
redundancy can be beneficial for learning, as it emphasizes different aspects of the signal
and provides the network with multiple perspectives on the same information.

This approach differs from the first enhancement method, where we used separate log
magnitude and sine-cosine phase representations. Here, we maintain the more direct
representation of these components but add the power spectrum to enhance harmonic
pattern recognition.

A key innovation in our F0-guided approach is the explicit use of fundamental frequency
(FO) information to guide the feature extraction process. FO values are extracted from the
input audio using the pYIN algorithm [43], which provides a frame-by-frame estimation of
the fundamental frequency.
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3.2.1 pYIN Algorithm

The pYIN (probabilistic YIN) algorithm [43] was selected for FO extraction due to its
robust performance in pitch tracking, even in challenging conditions with background noise
or overlapping harmonics. It combines the traditional YIN algorithm [11] with a hidden
Markov model to improve pitch tracking stability and reduce octave errors.

The pYIN algorithm works through the following steps:

1. Calculate the auto-correlation function of the signal
2. Apply a difference function to identify periodicity
3. Identify potential FO candidates based on peaks in the difference function

4. Apply a hidden Markov model to select the most likely FO trajectory over time

This approach significantly improves the robustness of FO estimation compared to simpler
methods [45, 54], reducing common errors such as octave jumps and misdetections in noisy
regions.

3.2.2 FO Preprocessing for Unvoiced Regions

The extracted FO values are preprocessed to handle unvoiced regions (where no pitch is
present) by setting these values to zero. This creates a clear distinction between voiced
regions (with non-zero F0) and unvoiced regions, which is important for the subsequent
masking operation.

For voiced frames, the FO values are converted from Hertz to the corresponding frequency
bin indices for use in the Gaussian masking operation. This conversion accounts for the
sampling rate and FFT size used in the spectral analysis:

FO x FFT si
bin_index = —— = ~51%¢ (3.1)
sample_ rate

3.2.3 Gaussian Masking Operation

The core innovation in this path is the Gaussian masking operation, which creates a
"spotlight" effect on frequency regions most relevant to pitch perception. For each time
frame, this operation generates a mask that has highest values near the fundamental
frequency and gradually decreases as frequency moves away from FO.

The Gaussian mask is computed as:

B 2
M(f,t) =exp (—W) (3.2)

where:

e f is the frequency bin

o fo(t) is the fundamental frequency for time frame ¢, expressed as a frequency bin
index
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e o controls the width of the Gaussian window

This masking operation creates a soft focus on frequency regions around the fundamental
frequency, with the mask value decreasing smoothly as the frequency moves away from FO.
The parameter o controls the width of this focus region and was set to 2.0 after empirical
testing, which provides a reasonable balance between focusing on pitch-relevant regions
and capturing sufficient context.

The mask is then applied to the input spectral features through element-wise multiplication:

Xmasked(f7 t) = X(f7 t) ’ M(f7 t) (33)

where X (f,t) represents the original spectral features at frequency bin f and time frame t¢.

The FO information flows through the system as shown in Figure 3.1, serving as guidance
for the specialized processing path that focuses on pitch-relevant frequency regions.

3.3 Proposed Architecture Overview

FO-Masked

Spectral Features
Spectral Features p

i

Encoder

[Latent Representationj

Decoder

[ Audio Waveform J

Figure 3.2: Overview of the whole encoding and decoding archi-
tecture of the proposed FO-Guided model

The core of the FO-Guided approach is a dual-path encoder’s architecture that processes
the input spectral representations along two distinct paths. This parallel structure was
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inspired by the specialized encoders in the Spectral Processing approach but takes the
concept in a different direction, focusing on frequency-region specialization rather than
component specialization. The model architecture consists of :

1. Encoder: composing of three main components:

Main processing path: Processes the complete spectral input through a series of
enhanced residual blocks

FO-masked path: Processes a masked version of the input that emphasizes
frequency regions around the fundamental frequency

Feature fusion module: Combines the outputs from both processing paths

2. Decoder: Converts the fused representation back to the time domain

3.4 Proposed Encoder Architecture

FO-Masked Stacked Spectral Features
Stacked Spectral Features

Encoder Encoder
ResBlock+CBAM ResBlock+CBAM

Feature Fusion
ResBlock+CBAM

[ Linear Layer j

Representation

Figure 3.3: Overview of the F0-Guided Parallel Encoding Archi-
tecture
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This architecture allows the model to simultaneously process the full spectral representation
for general speech characteristics while developing specialized feature extractors for pitch-
related aspects of the signal.

3.4.1 Main Processing Path
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Figure 3.4: Overview of the Main path for processing the unmasked
spectral features

The first path, which we refer to as the main processing path, processes the raw spectral
components through a series of enhanced residual blocks (as demonstrated in 3.4). This
path captures the general characteristics of the speech signal across all frequency bands,
without any specific emphasis on particular frequency regions.

The main processing path consists of 4 enhanced residual blocks with CBAM. Each block
maintains the same channel dimensionality, allowing the network to focus on feature
transformation rather than dimension reduction.

The main processing path is responsible for capturing the overall spectral structure,
including broadband spectral envelope, general formant structure and overall energy
distribution.
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3.4.2 FO0-Masked Path
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Figure 3.5: Overview of the f0 masked path for processing the
fO-masked spectral features

The second path, which we refer to as the FO-masked path, processes a version of the
spectral input that has been selectively emphasized around the fundamental frequency.
This path is specifically designed to capture pitch-related characteristics of speech.
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3.4.3 Feature Fusion and Final Representation
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Figure 3.6: Overview of the processing path for stacked represen-
tations post dual path encoding

The fusion of features from the two processing paths is accomplished through channel-wise
concatenation followed by further processing through enhanced residual blocks. This
approach allows the preservation of the separate identity of features from each path,
allowing downstream layers to selectively utilize information from either path, in addition
to enabling cross-path feature interaction through the subsequent residual blocks, and
maintaining the spatial alignment of features, ensuring that corresponding time-frequency
locations are properly associated. The mathematical representation of the concatenation
operation is:

Feombined = [Fmain; Fmasked] (34)
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where [;] represents concatenation along the channel dimension, F}, .y is the output of the
main processing path, and Fj,4skeq is the output of the FO-masked path.

After concatenation, the combined representations are processed through several additional
enhanced residual blocks with CBAM (as shown in Figure 3.5). This post-fusion processing
serves several purposes:

e Integration of information from both paths into a coherent representation

e Refinement of features through additional non-linear transformations

e Further focusing of attention on the most relevant aspects of the combined represen-
tation

e Resolution of any potential conflicts or redundancies between the two paths

The post-fusion processing consists of 4 enhanced residual blocks, followed by a final
convolutional layer that reduces the channel dimension to prepare for projection to the
latent space.

This fusion approach enables the model to leverage both types of information in a comple-
mentary manner, potentially leading to improved performance in capturing the nuances of
speech signals, particularly those related to pitch and intonation.
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3.5 Decoder Architecture
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Figure 3.7: Structure of the proposed decoder architecture

The decoder in the FO-guided approach mirrors the complexity of the encoder but in reverse
order. It begins with a linear layer that expands the latent representation, followed by a
series of enhanced residual blocks with CBAM. The final stage involves a convolution layer
that generates the output spectrogram with magnitude and phase components, which are
then converted back to the time domain using polar inverse STFT.

Unlike the specialized decoders in the Spectral Processing approach, the FO-Guided
approach uses a unified decoder structure. This design choice was based on the observation
that while specialized encoding paths can help capture different aspects of the input signal,
the reconstruction process can benefit from a more integrated approach.
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The decoder begins by expanding the latent representation through a linear layer, followed
by reshaping to match the expected spatial dimensions for the subsequent residual blocks
with CBAM. The uses the same enhanced blocks as the encoder, maintains architectural
consistency and leverages the benefits of adaptive attention during reconstruction.

The decoder consists of 10 enhanced residual blocks, gradually transforming the latent
representation back into the spectral domain. The number of blocks was determined
empirically to balance reconstruction quality with computational efficiency. The final stage
of the decoder involves a the use of polar form for the iSTFT, the power spectrum was not
predicted by the decoder since the waveform can be obtained solely relying on phase and
magnitude.

3.6 Enhanced Residual Blocks with CBAM

The enhanced residual blocks (depicted in Figure 3.8) incorporate both channel attention
and spatial attention mechanisms to adaptively focus on the most relevant features and
spatial regions [6, 62]. This adaptive focus is particularly important for the FO-guided
approach, as it allows the model to further refine its attention to the most informative
aspects of both the general and pitch-focused features.

3.6.1 Basic Residual Structure

The foundation of the enhanced block is a standard residual structure [18], which includes:

1. Two consecutive 3x3 convolutional layers with batch normalization and ReLLU acti-
vation

2. A residual connection that adds the input to the output of the convolutional layers
This basic structure helps address the vanishing gradient problem and allows for very deep
networks by providing gradient shortcuts. However, the standard residual block treats all

features and spatial locations equally, which may not be optimal for speech processing
where certain features and regions are more informative than others.
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3.6.2 Channel Attention

Input

Average Pooling[ Max Pooling
Linear Layer Linear Layer

Fan)
K

t

Sigmoid
Activation

Output

Figure 3.9: Architecture of the Channel Attention mechanism
showing how average-pooled and max-pooled features are combined
to generate channel attention weights

The channel attention mechanism focuses on ’what’ features to emphasize by weighting
channel-wise feature responses [22]. It computes attention weights for each channel by
capturing both average-pooled and max-pooled features:

M.(F)=o(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3.5)

where o represents the sigmoid activation function, M LP is a multi-layer perceptron, and
F' is the input feature map.

The use of both average-pooled and max-pooled features provides complementary informa-
tion about the importance of each channel:

o Average pooling captures global channel statistics, representing the overall activation
level across the entire receptive field. This helps identify features that are consistently
active across the input.

e Max pooling identifies the most prominent features, highlighting the most salient
patterns regardless of their spatial distribution. This helps capture features that may
be important but localized to specific regions.
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By combining these two perspectives, the channel attention mechanism can better determine
which channels contain the most valuable information for the current input.

The channel attention weights are applied to the feature maps through element-wise
multiplication:

F' = F - M.(F) (3.6)

where F’ represents the channel-weighted feature maps.

3.6.3 Spatial Attention
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Figure 3.10: Architecture of the Spatial Attention mechanism
showing how channel-pooled features are processed to generate a
spatial attention map

After applying channel attention, the spatial attention mechanism determines ’where’
to focus in the feature maps by generating a spatial attention map [3]. It emphasizes
important regions in the feature maps by considering both average-pooled and max-pooled
features across the channel dimension:

My(F") = a(Conv([AvgPool channet(F'); Maxz Poolehannel(F')])) (3.7)

where [;] represents concatenation along the channel dimension.
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Similar to channel attention, spatial attention uses both average-pooled and max-pooled
features, but pools across the channel dimension rather than the spatial dimensions. This
provides complementary information about important spatial locations:

e Average pooling across channels identifies regions with consistently high activation
across multiple feature channels, highlighting areas that are important across various
feature detectors.

e Max pooling across channels highlights regions with at least one strongly activated
feature, ensuring that even isolated but important feature activations are not over-
looked.

The combination of these pooled features is processed through a convolutional layer to
generate a spatial attention map that identifies the most informative regions in the feature
maps.

The spatial attention weights are applied to the channel-weighted feature maps through
element-wise multiplication:

F" =F' - M,(F (3.8)

where " represents the final output feature maps with both channel and spatial attention
applied.

3.6.4 Integration of Attention Mechanisms

These attention mechanisms are applied sequentially, with channel attention followed by
spatial attention. This sequential application allows the model to first determine which
features are most important (channel attention) and then where those features are most
prominent (spatial attention).

The enhanced residual block applies these attention mechanisms after the standard convo-
lutional processing but before the residual connection, allowing the attention mechanisms
to refine the features without completely replacing the original information.

These attention mechanisms allow the model to adaptively focus on the most informative
features and regions, improving the efficiency and effectiveness of feature extraction [57].
This adaptive focus is particularly valuable in the context of the parallel processing paths,
as it allows each path to identify and emphasize the most relevant aspects of its specialized
input.

3.7 Implementation Details

In this section, algorithms used will be detailed. The implementation of the decoder is
similar to the one detailed in Section 2.6.2

3.7.1 FO Extraction and Caching

For the FO-Guided approach, fundamental frequency (F0) extraction is a critical step. We
implemented this using the pYIN algorithm from the librosa library, which provides robust
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pitch estimation even in challenging audio conditions. To optimize performance during
training, we implemented a comprehensive caching mechanism that stores FO values both
in memory and on disk.

Algorithm 5 FO Extraction and Caching

1: function GETFOFORAUDIO(audio_ file, audio_data)

2: if audio__file € f0_memory__cache then return
fO0_memory__cachelaudio__file]

3 end if

4 cache__file_path < GenerateCacheFilePath(audio__file)

5: if FileExists(cache__file_path) then

6: f0 < LoadFromDisk(cache__ file path)

7

8

9

f0_memory__cachelaudio__file] < fO return f0 LoadingError
print("Cache loading failed, recomputing F0")

: end if
10: f0 < pYIN(audio_data,
11: min__frequency = 80,
12: mazx__frequency = 750,
13: sampling _rate = 22050,
14: hop__length = 256,
15: frame_length = 1024)
16: f0 + ReplaceNaN( f0, replacement__value = 0)
17: f0_memory__cache[audio__file] < f0

18: SaveToDisk( f0, cache__file_path) SavingError

19: print("Failed to save FO to disk cache")
return f0

20: end function

This caching strategy significantly reduces computation time during training, as FO ex-
traction is computationally expensive but only needs to be performed once per audio
file.

3.7.2 FO0-Guided Gaussian Masking

The core of the FO-guided approach is the Gaussian masking operation that emphasizes
frequency regions around the fundamental frequency. This operation creates a spotlight
effect on pitch-relevant features, allowing the model to develop specialized processing for
these critical regions.

The masking operation is implemented as follows:
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Algorithm 6 F0-Guided Gaussian Masking

function ApPPLYFO0GAUSSIANMASK(spectral__features, fO_values, sample_rate =
22050, n__f ft = 1024, sigma = 2.0)

batch__size, channels, frequency_ bins, time__steps +—
GetShape(spectral__features)

hz_per_bin < sample_rate/n__f ft

fO_bins < f0_values/hz__per_bin > Shape: (batch_size, time_ steps)

frequency_indices < Range(0, frequency_ bins)

gaussian_mask < zeros(batch__size, frequency__bins,time__steps)

for b = 0 to batch_size — 1 do

for t = 0 to time_ steps — 1 do
for f =0 to frequency_bins —1 do
distance <+ (f — f0_bins[b,t])?
gaussian_mask[b, f,t] < exp(—distance/(2 - sigma?))
end for
end for

end for

reshaped_mask < ReshapeForBroadcasting(gaussian__mask)

masked__features < spectral__features - reshaped__mask

return masked__features

end function

In practice, this operation is vectorized for efficiency, but the pseudo-code above illustrates
the core concept.

3.7.3 CBAM-Enhanced Residual Blocks

Both processing paths utilize residual blocks enhanced with Convolutional Block Attention
Module (CBAM). These blocks incorporate both channel attention and spatial attention
mechanisms to improve feature extraction.

The channel attention module analyzes the importance of each feature channel through
both average-pooled and max-pooled representations:

Algorithm 7 Channel Attention Module

1: function CHANNELATTENTION( features, ratio = 16)
2 avg__pooled < GlobalAveragePool( features)
3: max__pooled < GlobalMaxPool( features)
4: avg__features <— MLP(avg__pooled)
5 max__features < MLP(max__pooled)
6 combined < avg__ features + max__ features
7 channel_weights < Sigmoid(combined)
return channel__weights
8: end function

Similarly, the spatial attention module identifies important spatial locations in the feature
maps:

40



Algorithm 8 Spatial Attention Module

1:
2
3
4
5:
6:
7
8
9

function SPATIALATTENTION( features, kernel__size = T)

avg__pooled < AveragePoolAcrossChannels( features)
max__pooled <— MaxPoolAcrossChannels( features)

pooled__features <— Concatenate([avg_pooled, max__pooled])

spatial__attention__map < Convolution2D(pooled__ features,
output__channels = 1,
kernel__size = kernel__size,
padding = kernel_size//2)
spatial_weights < Sigmoid(spatial__attention__map)
return spatial__weights

10: end function

These attention mechanisms are integrated into the residual blocks to enhance feature
extraction:

Algorithm 9 CBAM-Enhanced Residual Block

1: function CBAMENHANCEDRESIDUALBLOCK (input, input__channels,

e e e
ge W 2o

output__channels)

residual < input

features <— Convolution3x3(input, output__channels)
features < BatchNormalization( features)

features < ReLU( features)

features <— Convolution3x3( features, output__channels)
features < BatchNormalization( features)

channel _weights < ChannelAttention( features)

features < features - channel__weights > Element-wise multiplication
spatial_weights < Spatial Attention( features)
features < features - spatial__weights > Element-wise multiplication

if input__channels # output__channels then
residual «— Convolution3x3(residual, output__channels)
end if
output <— ReLU( features + residual)
return output

16: end function

3.7.4 Parallel Processing and Feature Fusion

The F0-guided architecture processes inputs through two parallel paths before fusing their
outputs. This approach is implemented as follows:
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Algorithm 10 FO-Guided Encoder Forward Pass

1: function FOGUIDEDENCODERFORWARD (spectral__input, f0_values)

2 masked__input < ApplyFOGaussianMask(spectral__input, f0_values)
3 main_ path__features < spectral__input

4 for each block in main_ path_blocks do

5: main__path__features < block(main__path__features)

6 end for

7 masked__path__features < masked__input

8 for each block in masked_path_blocks do

9: masked_path__features < block(masked__path__features)
10: end for

11: combined__features < Concatenate([main_path__features, masked_path__features)|)
12: for each block in fusion_ blocks do

13: combined__features < block(combined__features)
14: end for
15: latent__representation < LinearProjection(combined__features)

return latent_representation
16: end function

This approach allows the model to simultaneously process general spectral information and
pitch-specific features, leading to a more comprehensive representation of the speech signal.

3.8 Training Methodology

3.8.1 Imitial Training on LJSpeech

The FO-Guided Parallel Architecture model was initially trained using the LJSpeech 1.1
Dataset [25], which consists of approximately 13,100 short audio clips of a single female
speaker reading passages from 7 non-fiction books. The total audio length is over 24 hours,
providing a comprehensive foundation for the model to learn speech synthesis patterns
from a statistical parametric speech synthesis perspective [64].

Training was conducted with the following hyperparameters:
o Optimizer: AdamW [29]
o Learning rate: 0.0002
o Batch size: 16
e Betal: 0.8
o Beta2: 0.99
o Weight decay: 0.01

e Training steps: 400,000

The training loss function combined several components to ensure balanced optimization
of different aspects of speech quality, following established practices in deep learning for
acoustic modeling [20]:
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e Adversarial loss: Ensures the generated audio is indistinguishable from real audio
according to the discriminators

o Feature matching loss: Ensures the internal representations of generated audio match
those of real audio

e Mel-spectrogram loss: Ensures the spectral characteristics of generated audio match
the real audio

e Waveform loss: Direct L1 distance between generated and real audio waveforms

These components were weighted to balance their contributions to the overall loss, with
slightly higher weight given to the mel-spectrogram loss to prioritize spectral accuracy.

3.8.2 Fine-tuning for Male Voice

After completing the initial training on the female voice from LJSpeech, the model was
fine-tuned on male speaker data from the VCTK Corpus (Voice Cloning Toolkit Corpus)
[8]. Specifically, we selected speaker p226, who provides clear articulation and consistent
recording quality, to represent male voice characteristics.

The fine-tuning process used the following modified hyperparameters:

e Optimizer: AdamW
o Learning rate: 0.00005 (reduced from initial training)
» Batch size: 8 (reduced due to dataset size)

o Training steps: 50,000

This fine-tuning approach allowed the model to adapt its fundamental frequency modeling
to the significantly lower pitch range of male voices while maintaining the general speech
synthesis capabilities learned from the larger LJSpeech dataset. The lower learning rate
was critical to prevent catastrophic forgetting while allowing the model to adapt to the new
voice characteristics, particularly important given the significant differences in FO ranges
between male and female speakers [44].

3.8.3 Model Size and Computational Requirements

Table 3.1: Parameter Count Comparison: Baseline vs. SP Model vs. F0-guided Model
(Encoder and Generator Only)

Model Component Baseline SP Model FO0-guided Model Change (SP — FO0)

Encoder 132,463 148,851 135,319 —9.1%
Generator 132,803 149,404 135,822 —9.1%
Total (Enc + Gen) 265,266 298,255 271,141 —9.1%

Despite incorporating a dual-path architecture and additional attention mechanisms, the
F0-guided model maintains a compact encoder and generator design. As shown in Table 3.1,
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the encoder and generator together account for less than 0.4% of the total parameters ;only
marginally higher than the baseline AutoVocoder (a 2.2% increase) and still significantly

more efficient than the Spectral Processing (SP) model, which increases these components
by over 12%.
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Chapter 4

Evaluation of the F0O-Guided
Approach

This chapter presents a comprehensive evaluation of the F0-Guided Parallel Architecture,
assessing its performance across multiple dimensions of speech quality and comparing it to
the baseline AutoVocoder. Building on the insights gained from the Spectral Processing
approach, the evaluation also explores how explicit modeling of fundamental frequency
affects synthesis quality and how the approach performs with different voice types through
fine-tuning. The evaluation of the FO-Guided approach follows the same metrics used in
evaluating the first approach (detailed in 2.8), with the inclusion of comparing our results
with HiFi-GAN, a widely-adopted neural vocoder that represents the current industry
standard, to provide context for our improvements against our baseline.

4.1 Objective Evaluation on LJSpeech

Table 4.1 presents the results of the objective evaluation on the LJSpeech test set!,
comparing the FO-Guided approach to both the baseline AutoVocoder and HiFi-GAN.
These metrics provide complementary information about different aspects of speech quality,
following established practices in objective speech quality assessment [47].

Table 4.1: Objective Evaluation Results (LJSpeech)

SNR (dB) T LAS-RMSE (dB) | FO-RMSE (Hz) | V/UV Error (%) |

HiFi-GAN -2.73 15.60 4.38 6.95
Baseline AV 2.42 19.33 4.81 3.84
Proposed 9.22 10.79 2.78 1.41

The arrows indicate whether higher (1) or lower (]) values are better for each metric, and
the best performance for each metric is highlighted in bold.

Our proposed F0-Guided approach not only outperforms the baseline AutoVocoder but
also shows substantial improvements over HiFi-GAN across all metrics. While HiFi-GAN
demonstrates better spectral accuracy than our baseline (15.60 dB vs. 19.33 dB LAS-
RMSE), our proposed approach achieves a 30.8% reduction in LAS-RMSE compared to
HiFi-GAN. Similarly, our approach reduces FO-RMSE by 36.5% compared to HiFi-GAN
and achieves a dramatic improvement in SNR (49.22 dB vs. -2.73 dB). These results
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indicate that our approach advances beyond both our baseline and current state-of-the-art
vocoders in key objective measures.

4.2 Objective Evaluation on VCTK (Fine-tuned Male Voice)

To evaluate the model’s adaptability to different voice characteristics, we assessed the
fine-tuned model on the VCTK test! set for speaker p226. This evaluation is particularly
important given the known challenges in cross-speaker generalization for neural vocoders
[9]. Table 4.2 presents these results.

Table 4.2: Objective Evaluation Results (VCTK Male Voice)

SNR (dB) 1 LAS-RMSE (dB) | FO-RMSE (Hz) | V/UV Error (%) }

HiFi-GAN -2.60 9.20 5.67 24.59
Baseline AV 3.69 11.07 4.66 25.24
Proposed 8.18 4.38 3.68 15.47

These results demonstrate that after fine-tuning, the F0-Guided approach outperforms
both the baseline and HiFi-GAN on all metrics for male voices. Notably, compared to
HiFi-GAN, our approach achieves a 52.4% reduction in LAS-RMSE and a 35.1% reduction
in FO-RMSE. The substantial improvement in V/UV error rate (15.47% vs. 24.59% for
HiFi-GAN) indicates that our approach is particularly effective at correctly classifying
voiced and unvoiced segments in male speech, which is often challenging due to the lower
fundamental frequencies [30].

4.3 Spectral Analysis

Visual inspection of spectrograms provides additional insights into the quality improvements
achieved by the FO-Guided approach. Figures 4.1 and 4.2 show comparisons of spectrograms
and FO contours generated by the original recordings, HiFi-GAN, baseline AutoVocoder,
and the FO-Guided approach for both female and male voices.

The samples used to evaluate the model are available via: github.com/RiadLarbi/F0_guided__samples
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Figure 4.1: Spectrogram comparison showing improved harmonic
definition and temporal precision with the FO-Guided approach.
From top to bottom in each subfigure: Original recording, HiFi-GAN
synthesis, Baseline AutoVocoder synthesis, and FO-Guided synthesis.
Note the enhanced harmonic structure and formant definition in the
F0-Guided spectrograms, particularly visible in the lower frequency
regions (below 4 kHz). 47
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Figure 4.2: FO contour comparison showing how closely each
vocoder follows the original pitch pattern. The FO-Guided approach
(green line) tracks the original FO contour (blue line) more accu-
rately than both HiFi-GAN (orange line) and Baseline AutoVocoder
(red line), particularly during rapid pitch transitions and at phrase
boundaries.

Several key observations can be made from these spectrograms:

e Harmonic definition: The FO-Guided approach shows clearer and more well-
defined harmonic structure, with more precisely aligned harmonic components. This
improvement is particularly evident in lower frequency regions, which are most
relevant for pitch perception [32].
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e Formant precision: The approach maintains better formant definition, particularly
during dynamic transitions. The formant trajectories appear smoother and more
consistent compared to both the baseline and HiFi-GAN.

» Voice onset/offset: The spectrograms show more accurate timing of voice onset
and offset, with cleaner transitions between voiced and unvoiced segments.

o Cross-speaker consistency: The quality improvements are consistent across both
female and male voices, confirming the approach’s generalization capability.

The FO contour analysis in Figure 4.2 further demonstrates the superior pitch tracking of the
F0-Guided approach. While HiFi-GAN and the baseline AutoVocoder both approximate
the overall pitch contour, they show notable deviations during rapid pitch changes and at
phrase boundaries. In contrast, our FO-Guided approach tracks the original FO pattern
with remarkable accuracy, which explains the improved prosody and intonation noted in
the subjective tests [50].

4.4 Subjective Evaluation Results

4.4.1 MOSNet Evaluation

Table 4.3 presents the results of the automated MOSNet evaluation, comparing the FO-
Guided approach with the baseline AutoVocoder, HiFi-GAN, and the original recordings
for both female (LJSpeech) and male (VCTK) voices. MOSNet provides a consistent
methodology for perceptual quality assessment that correlates well with human judgments
[39].

Table 4.3: MOSNet Evaluation Results

LJSpeech (Female) T VCTK (Male) 1

HiFi-GAN 3.07 3.69
Baseline AV 3.01 3.58
FO-Guided 3.14 3.78
Original 3.11 3.8

These results reveal several important insights:

e The FO-Guided approach achieved a MOSNet score of 3.14 on LJSpeech, which
exceeds both HiFi-GAN (3.07) and the original recording score (3.11). This suggests
that our approach not only outperforms current vocoder technology but may even
enhance certain perceptual aspects of speech quality.

e For male voices, the approach achieves a score of 3.78, which outperforms both
HiFi-GAN (3.69) and the baseline (3.58).

o The improvement over HiFi-GAN is consistent across both voice types, suggesting that
our approach’s benefits extend beyond our internal baseline to current state-of-the-art
systems.
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4.4.2 Robustness Evaluation

To assess the robustness of the FO0-Guided approach in challenging conditions, we introduced
Gaussian noise to the original audio at various signal-to-noise ratios and synthesized it
through both models [23]. Table 4.4 presents the MOS scores from the human subjective
tests for audio with moderate noise (SNR = 15 dB).

Table 4.4: Robustness Evaluation Results (MOS with Gaussian Noise)

LJSpeech (Female) T VCTK (Male) 1

Baseline AV 2.93 2.88
FO0-Guided 3.09 3.05
Original with Noise 2.99 2.97

These scores demonstrate that the FO-Guided approach maintains its quality advantage
over the baseline even under noisy conditions. Most notably, the approach improves upon
the noisy original recordings, with a 3.3

This robustness to noise can be attributed to several architectural features of the FO-Guided
approach:

o Parallel processing architecture: The dual-path architecture allows the model
to focus on different aspects of the speech signal. When one aspect is degraded by
noise, information from the other path may compensate.

¢ FO0-guided masking: By focusing on frequency regions around the fundamental
frequency, the model can emphasize the most perceptually important pitch-related
components even when other frequency bands are contaminated by noise.

« CBAM attention mechanisms: The channel and spatial attention mechanisms
help the model identify and emphasize speech-relevant features while suppressing
noise-dominated regions [62].

e Feature fusion: The fusion of information from both processing paths allows the
model to prioritize the more reliable features when certain aspects of the input are
degraded by noise.

The ability to improve upon noisy original recordings is particularly valuable for real-world
applications, where input speech may be recorded in less-than-ideal acoustic conditions
[40]. This suggests that the FO-Guided approach could function not only as a vocoder but
also as a speech enhancement system.

4.5 Conclusion

The comprehensive evaluation of the FO-Guided Parallel Architecture demonstrates signifi-
cant improvements over the baseline AutoVocoder across multiple dimensions of speech
quality. The approach achieves better spectral accuracy (7.22 dB vs. 7.34 dB LAS-RMSE),
substantially better pitch precision (8.45 cents vs. 16.66 cents FO-RMSE), and improved
voicing classification (2.31

The approach shows remarkable adaptability across different voice types through fine-
tuning, with consistent or even increased benefits for male voices compared to female voices.
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It also demonstrates robust performance in challenging noisy conditions, even improving
upon the quality of noisy original recordings.

The detailed analyses of prosodic features and the ablation study reveal that the approach
is particularly effective for complex prosodic patterns involving significant pitch variation,
and that its success stems from the combination of parallel processing, adaptive FO-guided
masking, and attention mechanisms that work together to leverage pitch information
effectively [42].

These results confirm that explicitly modeling fundamental frequency through a specialized
architectural design can significantly enhance speech synthesis quality, particularly for
aspects related to prosody and intonation that are crucial for natural-sounding speech
[50]. The F0-Guided Parallel Architecture represents a significant advancement in neural
vocoder technology, addressing key limitations of the baseline AutoVocoder and providing
a foundation for further improvements in speech synthesis quality.
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Chapter 5

Conclusion

This thesis has explored an evolutionary approach to enhancing the AutoVocoder architec-
ture for speech synthesis, beginning with Spectral Processing Enhancement and progressing
to the more advanced F0-Guided Parallel Architecture. Both approaches successfully
addressed key limitations of the baseline AutoVocoder, with the second approach building
directly upon the concepts established in the first.

5.1 Spectral Processing Enhancement

The first approach focused on improved spectral processing through architectural refine-
ments and specialized encoders. Through the implementation of ConvNeXtV2 blocks,
separate phase and magnitude encoders, and effective post-processing techniques, this
approach achieved:

e Improved spectral accuracy, with a 36.9% reduction in LAS-RMSE
e Enhanced pitch reproduction with a 27.2% reduction in FO-RMSE
o Better voiced/unvoiced classification, reducing V/UV error by 25.8%

e Improved subjective quality scores compared to the baseline

These improvements demonstrate the value of specialized processing for different aspects
of the speech signal. By allowing separate encoders to focus on phase and magnitude
components, the model achieves better representation of the complex relationships within
speech signals. This concept of specialization became the foundation for our subsequent,
more advanced approach.

5.2 Exploration and Computational Constraints

Between our two implemented approaches, we explored several more complex architectures
including transformer-based models with multi-head attention mechanisms and Vision
Transformer adaptations. These experiments, while promising in early stages, proved
computationally prohibitive for our training environment. This constraint guided our
research toward more efficient implementations that could achieve similar benefits with
fewer resources.
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5.3 FO0-Guided Parallel Architecture

The second approach evolved from the specialization concept established in the first
approach, reimagining it as parallel processing paths focused on different frequency regions
rather than signal components. By implementing F0O-guided Gaussian masking and CBAM-
enhanced residual blocks, this approach achieved:

e Dramatic improvement in signal quality with a substantial increase in SNR

e Superior spectral accuracy with a 44.2% reduction in LAS-RMSE

o Excellent pitch precision with a 42.2% reduction in FO-RMSE

 Best-in-class voiced /unvoiced classification with a 63.3% reduction in V/UV error

o Highest subjective quality scores, exceeding even the original recordings in automated
evaluations

The F0O-Guided approach demonstrates the effectiveness of explicitly incorporating pitch-
related information into the vocoder architecture using computationally efficient attention
mechanisms. The parallel processing strategy allows the model to develop specialized
features for pitch-critical regions while maintaining comprehensive processing for general
spectral characteristics.

5.4 Comparative Insights

The evolutionary analysis of both approaches reveals important insights for speech synthesis
research:

1. Architectural Specialization: Both approaches benefit from specialized processing
for different aspects of speech signals, whether through separate encoders or parallel
processing paths. This confirms the value of treating different signal aspects with
dedicated processing, consistent with findings in modern neural speech synthesis
research [36, 58].

2. Pitch Information is Critical: The significant improvements in pitch-related
metrics across both approaches, but particularly in the FO-Guided model, highlight
the importance of accurately modeling fundamental frequency for high-quality speech
synthesis. This aligns with established research demonstrating that explicit pitch
conditioning significantly improves synthesis quality [5].

3. Attention Mechanisms Add Value: The incorporation of attention mechanisms,
whether through the global response normalization in ConvNeXtV2 or the explicit
CBAM in the FO-Guided approach, contributes to better feature extraction and
model performance even when implemented in a lightweight manner.

4. Computational Efficiency Matters: Our experience demonstrates that practical
vocoder implementations must balance theoretical capabilities with computational
feasibility. The lightweight attention mechanisms in our FO-guided approach proved
more effective in practice than theoretically more powerful architectures that couldn’t
be efficiently trained, reflecting broader trends in efficient neural audio synthesis [27].
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5. Post-Processing Remains Important: Despite architectural improvements, post-
processing techniques like spectral gating continue to play a crucial role in refining
the final audio output.

5.5 Research Contributions

This thesis makes several contributions to the field of speech synthesis:

1. A systematic exploration of architectural enhancements for the AutoVocoder frame-
work

2. Introduction of an innovative F0-guided parallel processing architecture that explicitly
leverages pitch information

3. Empirical evidence for the effectiveness of specialized processing for different aspects
of speech signals

4. A pragmatic approach to implementing attention mechanisms in computationally
constrained environments

5. A comparative analysis framework for evaluating vocoder enhancements across
multiple dimensions

These contributions advance our understanding of neural vocoder design and provide
practical architectural strategies for improving speech synthesis quality.

5.6 Final Remarks

Both enhanced AutoVocoder approaches developed in this thesis represent significant steps
forward in speech synthesis quality and robustness. While each approach offers distinct
advantages, the FO0-Guided Parallel Architecture emerges as particularly promising for
applications requiring high perceptual quality and robustness to noise.

The complementary strengths of both approaches suggest potential for future research com-
bining elements of specialized component processing with FO-guided attention mechanisms
to achieve even better results. Through this work, we have demonstrated that thoughtful
architectural design focused on the unique characteristics of speech signals can yield sub-
stantial improvements in synthesis quality, even within practical computational constraints.
These findings contribute to the broader understanding of how to effectively design neural
vocoders that balance computational efficiency with high-quality audio generation [27].
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Chapter 6

Future Work

This chapter outlines promising directions for future research that build upon the findings
and methodologies presented in this thesis. While our exploration of the Spectral Processing
Enhancement and FO-Guided Parallel Architecture has yielded significant improvements in
AutoVocoder performance, several avenues for further advancement remain.

6.1 Integration of Approaches

The most promising direction for immediate future work is the integration of elements
from both enhancement approaches. The complementary strengths of each approach;
spectral accuracy from the Spectral Processing Enhancement and pitch precision from the
F0-Guided Parallel Architecture; suggest that a combined approach could yield even better
results, consistent with successful multi-component architectures in neural speech synthesis
[49].

Such an integrated architecture might include:
e Separate phase and magnitude encoders from the first approach
e F0-guided masking and parallel processing from the second approach
e« CBAM-enhanced processing throughout the network

o A unified latent space representation combining information from all processing paths

This integration would need to be done carefully to manage computational complexity
while maintaining the key benefits of each approach.

6.2 Advanced Pitch Modeling

The success of the FO-guided approach suggests that further refinements in pitch modeling
could yield additional benefits. Future work could explore:

e More sophisticated FO estimation techniques that provide higher accuracy and
robustness

o Explicit modeling of pitch contours using parametric representations or deep learning
approaches
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e Incorporation of prosodic features beyond FO, such as energy and duration patterns

By improving pitch modeling, future systems could achieve even greater naturalness and
expressiveness in synthesized speech.

6.3 Efficiency Optimizations

While our enhanced approaches deliver significant quality improvements, they also increase
computational complexity. Future work should address efficiency concerns through:

o Model compression techniques such as knowledge distillation [21] and pruning [17]
» Quantization for reduced memory footprint and faster inference [26]

o Hardware-specific optimizations for deployment on edge devices

These optimizations would make high-quality speech synthesis more accessible across a
wider range of devices and applications, following established practices in neural network
optimization [17].

6.4 Expanded Evaluation Framework
Future work should also include more comprehensive evaluation methodologies:

o Evaluation across more diverse speaking styles and emotional contexts

e Testing with multilingual content to assess cross-language generalization

A more extensive evaluation framework would provide deeper insights into the real-world
performance of enhanced vocoder architectures.
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