

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Artificial Intelligence

Sadi Mahmud Shurid

Decoding Brainwaves into Words using Neural EEG-to-Text
Generation with LLMs

SUPERVISOR

Dr. Al-Radhi Mohammed Salah

BUDAPEST, 2025

Contents
Abstract .. 6

1 Introduction .. 7

1.1 Background and Motivation ... 7

1.2 Thesis Objectives and Structure ... 8

2 Related Work ... 10

2.1 EEG-to-Text Generation Techniques ... 10

2.2 Neural Architectures for EEG Representation .. 13

2.3 Multimodal alignments and LLM based approaches .. 14

3 Methodology ... 16

3.1 System Overview .. 16

3.2 Dataset and Preprocessing .. 16

3.2.1 Data Source .. 16

3.2.2 Data Preprocessing Pipeline .. 17

3.3 Baseline Architecture .. 17

3.3.1 Stage 1: EEG Encoder Training... 18

3.3.2 Stage 2: Alignment with CLIP .. 19

3.3.3 Stage 3: Text Generation with LLM .. 20

3.3.4 Problem Formulation and Why We Need a Better Encoder 20

3.4 Proposed Methodology ... 21

3.4.1 Architectural Motivation.. 21

3.4.2 CNN-to-Transformer Transition .. 22

3.4.3 Transformaer Encoder Layers ... 23

3.5 Training Pipeline ... 24

3.5.1 Training the Encoder ... 25

3.5.2 LLM Fine-Tuning .. 26

3.5.3 Implementation Details .. 27

3.6 Evaluation Setup ... 27

3.6.1 Inference Protocol .. 28

3.6.2 Evaluation Metrics ... 29

4 Results and Discussion... 32

4.1 Quantitative Analysis .. 32

4.1.1 BLEU-1 and BLEU-4 Scores .. 33

4.1.2 ROUGE-L Scores .. 33

4.1.3 METEOR Scores ... 34

4.1.4 BERTScore .. 34

4.1.5 Object Classification Accuracy ... 35

4.2 Qualitative Analysis .. 36

4.2.1 Descriptive Detail and Attribute Capture .. 37

4.2.2 Semantic Accuracy and Contextual Understanding 37

4.2.3 Connecting Qualitative Observations to Proposed Methodology 38

5 Conclusion and Future Work ... 40

5.1 Summary of Contributions .. 40

5.2 Limitations and Future Directions .. 41

6 Publication .. 42

References .. 43

Annex ... 45

I. Declaration on the Use of Generative Artificial Intelligence 45

STUDENT DECLARATION

I, Sadi Mahmud Shurid, the undersigned, hereby declare that the present BSc thesis

work has been prepared by myself and without any unauthorized help or assistance. Only

the specified sources (references, tools, etc.) were used. All parts taken from other sources

word by word, or after rephrasing but with identical meaning, were unambiguously

identified with explicit reference to the sources utilized.

I authorize the Faculty of Electrical Engineering and Informatics of the Budapest

University of Technology and Economics to publish the principal data of the thesis work

(author's name, title, abstracts in English and in a second language, year of preparation,

supervisor's name, etc.) in a searchable, public, electronic and online database and to

publish the full text of the thesis work on the internal network of the university (this may

include access by authenticated outside users). I declare that the submitted hardcopy of

the thesis work and its electronic version are identical.

Full text of thesis works classified upon the decision of the Dean will be published after

a period of three years.

Budapest, 12 December 2025

 Sadi Mahmud Shurid

 6

Abstract

Translating brain activity into natural language has become an emerging direction

in brain-computer interfaces, offering new possibilities for assistive communication. Yet,

working with EEG signals remains challenging, as they are often noisy and capture only

an indirect view of the underlying neural processes. These limitations make it difficult

for existing systems to learn both fine-grained patterns and the broader temporal structure

present in brain responses.

This thesis explores an approach that aims to improve EEG-to-Text generation by

introducing an encoder that blends convolutional layers with Transformer based

modeling. The design allows the network to learn short-term features while also capturing

relationships that unfold across the full EEG sequence. The complete framework follows

a three-stage training process, and the system was tested with two different large language

models. Both the quantitative and qualitative evaluations indicate that the enhanced

encoder produces more coherent descriptions than a purely CNN-based baseline. Overall,

the results suggest that incorporating global context modeling can meaningfully

strengthen EEG-to-Text generation.

 7

1 Introduction

Electroencephalography to text (EEG-to-Text) generation is one of the most

recent approaches of brain-computer interfaces (BCIs). Its aim is to translate non-invasive

(recorded without penetrating the human body) brain signals into natural language.

Figure 1: The introductory idea of decoding brainwave (in form of EEG) to text.

As illustrated in Figure 1, the process starts from a person observing a visual (an image).

This induces activity in the brain to be measured and recorded via EEG setup. Then it is

to be passed via a “model” (symbolic at this point in Figure 1). In the end the output is

expected in form of a text containing what the person would have probably thought while

looking at the visuals.

1.1 Background and Motivation

BCI research has evolved from early demonstrations of “mental prosthesis”

communication to current efforts at decoding complex thoughts. Early BCIs

predominantly relied on event related potentials [1] and other explicit neural responses to

allow basic communication. Text generation from EEG is a logical next step. It aims to

produce descriptions or sentences reflecting a person’s “thoughts” or “perceptions.”

Early attempts toward this goal have been modest, for instance, classifying a small set of

imagined words from EEG signals [2]. However, with the surge in natural language

processing capabilities, especially with large language models (LLMs), there is a strong

motivation to enable open vocabulary EEG-to-Text generation. Instead of limiting the

user to a fixed dictionary or spelling interface, an LLM based BCI could, in principle,

express any idea the user may have in mind in natural language. This would greatly

 8

enhance the communicative bandwidth of BCIs, benefitting users with speech or motor

impairments by allowing more fluid and semantically rich communication.

However, EEG signals are kind of an indirect reflection of underlying neural activity [3].

Therefore, it is extremely important to ensure proper mapping for EEG-to-Text gneration,

also, structure the language models (e.g. deepseek-llm-7b-chat [4] in our case) in a proper

way so that the outputs are semantically controlled.

1.2 Thesis Objectives and Structure

This thesis investigates the generation of natural language text (in English) from

EEG signals by proposing an enhanced neural architecture for EEG-to-Text translation

integrated with LLMs. The main aim is to strengthen representation learning by modeling

both short term and long range patterns in brain activity.

Research Objectives: The core objective is to design and test an enhanced encoder that

combines convolutional neural networks (CNN) with Transformer layers. This

architecture is intended to capture complex spatiotemporal patterns in EEG data more

effectively. The work also aims to show that the performance stability of this encoder

architecture integrated with newly released LLM which has not been tested in this kind

of frameworks yet.

Thesis Contributions: This thesis offers three main contributions. Firstly, it proposes a

CNN-Transformer encoder that handles EEG signals more effectively than earlier CNN-

based models. The CNN extracts local features, while the Transformer layers capture

temporal relationships across the full recording window. Then, it evaluates this encoder

with two different LLMs. The results show that the encoder improvement benefits both

models, meaning the gains come from better EEG representations rather than the choice

of language model. Lastly, it provides quantitative and qualitative evidence of

improvements compared to existing baseline; achieving a fair amount of relative increase

in object classification accuracy and improves most text generation metrics.

Thesis Organization: The rest of the thesis is structured as follows. Chapter 2 reviews

related work on EEG based BCIs, neural models for EEG processing, and approaches that

link neural data with LLMs. Chapter 3 describes the dataset, baseline system, proposed

encoder, training method, and evaluation setup. Chapter 4 reports the evaluation in details

 9

by discussing the quantitative results and qualitative examples. Chapter 5 concludes with

the main findings, limitations, and potential future work.

 10

2 Related Work

EEG refers to a non-invasive technique for recording brain activity using sensors

placed on the human scalp [5]. By capturing tiny electrical signals produced by neurons,

EEG allows us to peer into a person’s brain activity. Using EEG to generate written text

(essentially translating “thoughts” into words) is an exciting goal with potential

applications in assistive communication (helping paralyzed or non-verbal patients convey

thoughts) and human-computer interaction.

Figure 2: Schematic of a typical EEG recording setup [5].

2.1 EEG-to-Text Generation Techniques

Researchers in BCIs have been aiming to translate brain activity directly into

natural language for a long time. The ability to translate a human’s brain signals into text,

or, in other words, reading “thoughts” promises new communication pathways for

individuals with paralysis, disabilities or speech impairments. Early BCI systems,

however, achieved communication in more constrained ways. For example, P300 speller

interfaces allowed users to select letters by focusing attention on flashing choices, relying

on event related EEG responses to output words by one character at a time [6]. Such

systems demonstrated that EEG could be used for communication, but they were slow

and limited to controlled selection tasks rather than language generation from brain

activity.

Being non-invasive, EEG measures the brain’s electrical activity from the scalp and is

considered safe, also portable. However, it presents significant challenges for text

 11

decoding. EEG signals have low spatial resolution and a poor signal-to-noise ratio. They

vary greatly across individuals. These properties make it difficult to map EEG patterns

reliably to the complex space of words and sentences. In contrast, invasive recording

methods like electrocorticography (ECoG) offer cleaner signals and have shown

remarkable success in neural speech decoding. For instance, researchers have translated

ECoG signals into text by decoding imagined handwriting or synthesizing spoken

sentences from cortical activity [1]. This work demonstrated one of the first encoder and

decoder frameworks that converted ECoG signals directly into text [1]. Similarly, in

another work researchers have enabled a paralyzed patient to communicate at 90

character/minute by decoding neural signals for handwriting into text [7]. These invasive

approaches highlight the potential for brain-to-text communication, but their surgical

requirements make them impractical and inconvenient for widespread use.

With EEG, early efforts toward language output focused on classification tasks rather

than thoughtful sentence generation. Researchers have trained EEG classifiers to

recognize a limited set of words or phonemes that a user is thinking of, for example, by

classifying a small set of vocabulary of imagined words from EEG signals [2]. Other

studies targeted even more elementary units, like identifying phonological categories or

syllable rhythms from EEG. Beyond linguistic content, BCI based on EEG research has

also included tasks like recognizing visual stimuli that a person sees or detects when a

certain keyword is heard. These classification approaches treat brain to text as a

recognition problem (selecting from predefined categories) rather than truly generating

novel sentences based on raw thoughts.

Despite some success in classification, the open-ended generation of natural language

from EEG remained largely uncharted until recent years. The difficulty lies in EEG

signal’s ambiguity. There is no simple or direct mapping from an EEG waveform to a

specific word or sentence. One cannot reliably pinpoint, for instance, an “Aha, the person

just thought of the word aeroplane” moment in a raw EEG signal. This is why most of

the earlier EEG based communication systems either used spelling interfaces or limited

vocabulary classification [2]. In the mid-2010s, Herff and Schultz [3] reviewed the state

of brain-to-text research and highlighted the challenge that even cutting-edge attempts at

EEG-based speech recognition were achieving only modest accuracies on small word sets

[3]. The general consensus was that EEG-to-Text translation required more advanced

 12

machine learning and likely multimodal assistance to succeed, which set the stage for the

deep learning approaches.

A key development reigniting interest in EEG-to-Text was the rise of deep learning and

language models. By the early 2020s, LLMs had demonstrated an ability to generate

fluent text given appropriate inputs. Researchers began to ask whether those generative

abilities could be exploited to decode brain signals. However, applying LLMs to neural

data is not a straightforward task. An LLM expects inputs in the form of text or similarly

rich representations, whereas EEG signals are noisy time-series data. Bridging this gap

became a focus of this field of the BCI research.

Recent work has shown promising progress by using multimodal alignment techniques

and deep neural networks to translate EEG into a form that an LLM can understand.

Rather than attempting a direct translation from raw EEG-to-Text (which would require

an impractically large training corpus of brain data paired with text), these new

approaches break the problem into different parts. They often involve an intermediate

step of mapping EEG data into a semantic representation, leveraging another modality

such as images or known concepts (We will explore these strategies in Section 2.3 and

will be discussed further in details in the “Methodology” chapter). Notably, in 2023 a

team at Meta AI demonstrated that with proper machine learning models, even non-

invasive recordings can recover surprising amounts of linguistic information [8]. They

decoded heard speech from brain recordings with performance far above chance [8].

While their work used data from magnetoencephalography (MEG) [8] recording and

focused on speech perception (identifying what a person was hearing) rather than

spontaneous speech generation, it provided a promising pathway that modern deep

learning can extract semantic content from non-invasive brain signals. This and similar

advances in neural decoding have set the stage for true EEG-to-Text translation systems.

In summary, earlier EEG-to-Text techniques were constrained to classification and

control paradigms, highlighting the difficulty of the task. Only in the last couple of years

have researchers started to combine powerful neural network encoders with language-

generation models to move beyond classification toward fluent text generation. The

following sections discuss the neural network architectures that make learning useful

EEG representations possible (Section 2.2) and then the multimodal alignment and

prompting approaches that link those representations to language models (Section 2.3).

 13

2.2 Neural Architectures for EEG Representation

The central aspect to any EEG-to-Text system is an EEG encoder. An encoder

transforms raw EEG signals into a meaningful internal representation that can be used for

downstream tasks. Designing an effective encoder is challenging because EEG data are

high-dimensional time series with complex spatiotemporal patterns. Modern approaches

use deep neural networks to automatically learn feature representations from the data.

Two classes of neural architecture have proven especially useful for EEG representation:

convolutional neural networks (CNNs) [9] and Transformers [10].

CNNs are a natural fit for EEG because they excel at extracting local patterns from

multivariate signals [11, 12]. In EEG, relevant information is often encoded in temporal

windows (e.g. an oscillation or waveform occurring over a few hundred milliseconds)

and across particular subsets of electrodes. CNNs can capture these patterns through

learned filters that slide over time and across channels. A prime example is EEGNet [11],

a compact CNN architecture introduced for EEG-based BCIs [11]. EEGNet [11] uses

convolutional filters to first capture frequency-specific temporal features (by convolving

along the time dimension) and then spatial filters to capture relationships across EEG

channels [11]. Despite having only a few thousand parameters, EEGNet [11] achieved

competitive performance on a variety of BCI tasks, including event related potential

detection and motor imagery classification. Its success demonstrated that CNNs can learn

efficient representations from raw EEG, often outperforming earlier approaches that

required manual feature extraction.

In the context of EEG-to-Text translation, CNN based encoders have been widely used

in recent frameworks [12]. While CNNs have become a standard tool for EEG feature

extraction, the Transformer [10] architecture offers an alternative that has attracted

increasing attention. Transformers were first developed for language processing, but their

core mechanism “self-attention” is general and can be applied to any sequence data [10].

However, applying Transformers to EEG is non-trivial. Transformers typically have

many more parameters than CNNs, which raises the risk of overfitting, especially given

that EEG datasets tend to be small (often only a few of hours of data or even minutes).

To address this, researchers have explored hybrid models that combine Transformers with

CNN-like elements to get the best of both worlds, for instance, a framework called

EEGEncoder [13] was introduced for motor imagery classification that fuses Temporal

Convolutional Networks with modified Transformer blocks [13]. In their design,

 14

convolutional layers first extract low-level features and downsample the signal, and then

Transformer style attention layers operate on these features to capture long range

temporal relations [13]. By using a dual-stream architecture (one focusing on temporal

features, one on spatial features) and then merging them, they achieved state-of-the-art

accuracy on a standard motor imagery EEG dataset [13]. This demonstrates a possible

trend of hybrid CNN-Transformer encoders for EEG.

In summary, CNNs remain the workhorse for EEG feature extraction due to their

efficiency and strong track record in BCI tasks, whereas Transformer based models are

an emerging frontier showing potential for capturing more complex patterns in EEG data

[14]. In practice, current EEG-to-Text systems often start with a CNN encoder. Mostly

because successful prior frameworks did so. But researchers are actively exploring the

possibility of combined models to replace or augment the CNN. As we move to

multimodal EEG-to-Text pipelines, the encoder’s job is to produce a representation rich

enough to be mapped to semantic concepts, which both CNNs and Transformers can

achieve. The next section will discuss how such EEG representations are aligned with

other modalities and fed into language models to generate text.

2.3 Multimodal alignments and LLM based approaches

A crucial challenge in EEG-to-Text translation is linking neural signal

representations to text outputs. Recent approaches address this by introducing a

multimodal alignment phase that trains an EEG encoder to map brain signals into a shared

semantic space compatible with language models. This enables subsequent use of LLMs

to generate text descriptions based on aligned neural embeddings. The Thought2Text [12]

system exemplifies this strategy, adopting a three stage pipeline in which EEG

representations are first aligned with visual features, then used to fine-tune multimodal

captioning models, and finally adapted so that the LLM can generate text directly from

EEG-derived embeddings [12].

In this pipeline, an EEG encoder is trained to produce embeddings that approximate

corresponding image features, facilitating alignment with pretrained vision-language

spaces. Next, an instruction-tuned LLM such as Mistral-7B [15] is fine-tuned on paired

visual and textual data to generate descriptive captions. Finally, the language model is

 15

further tuned to accept EEG aligned representations as inputs, enabling direct EEG-to-

Text translation during inference.

An important observation from this line of work is that using instruction-tuned LLMs,

such Mistral-7B [15], influences the nature of generated outputs. These models tend to

produce verbose and detailed descriptions, which can inflate overlap-based evaluation

scores like BLEU [16] even if some details are not strictly followed by the observed image

visual.

 16

3 Methodology

3.1 System Overview

This thesis extends the state-of-the-art Thought2Text [12] framework by adding

architectural improvements to the EEG encoder and testing the system with multiple

language models. We have a three-stage training approach with a proposed encoder to

capture both local patterns (through CNNs) and global context (through Transformers).

The complete pipeline transforms raw EEG recordings into text descriptions through

three main components: (1) a proposed CNN-Transformer encoder that processes brain

signals, (2) a projection layer that connects the encoder to the language model, and (3) an

instruction-tuned LLM that generates the actual text. Unlike simple classification systems

[2, 7], our approach can generate open-ended descriptions directly from neural activity

while keeping up with the global context of brain activity unlike only CNN dependent

encoders such as in the baseline [12].

3.2 Dataset and Preprocessing

3.2.1 Data Source

We use a publicly available EEG dataset1 where six people viewed images from

40 different object categories (selected from 1000 different ImageNet2 classes). During

data collection, participants saw visual stimuli while their brain activity was recorded

using a 128-channel EEG system. Each trial shows a fixation cross, then the image for

0.5 seconds, followed by a brief rest period. The raw signals were sampled at 1000 Hz

and preprocessed with a 5-95 Hz bandpass filter to keep relevant frequencies while

removing noise.

1 https://drive.google.com/drive/folders/1XqV6MMl28iYXkQBMEFHfEXllGmCbqpOu

2 https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/

 17

3.2.2 Data Preprocessing Pipeline

The preprocessing pipeline implements several transformations to prepare raw

EEG recordings for neural network processing. First, temporal windowing extracts

relevant signal segments corresponding to the visual stimulus presentation. The analysis

focuses on the time interval from 20 to 460 milliseconds post-stimulus onset, capturing

the critical period of visual information processing while excluding early sensory

transients and late cognitive components [12]. The extracted temporal segments undergo

standardization across channels to account for inter-electrode variance in signal

amplitude. Each EEG trial is represented as a tensor of shape (1, 128, 440), where the

first dimension represents the single-channel depth, the second corresponds to the 128

spatial electrodes, and the third captures the 440 temporal samples (equivalent to 440

milliseconds at the original sampling rate). This representation preserves both the spatial

arrangement of electrodes and the temporal dynamics of neural activity. The final curated

dataset maintains sufficient sample diversity for robust model training while adhering to

strict quality standards.

3.3 Baseline Architecture

This section describes the baseline Thought2Text framework [12] that our work

extends. We provide this overview to establish context for our architectural modifications

described in Section 3.3. Figure 3 illustrates the framework which serves as the baseline

for this thesis. The system works in three stages: first, it trains an EEG encoder to

understand brain signals; second, it aligns these signals with visual concepts using CLIP;

and third, it connects everything to an instruction tuned language model, such as Mistral-

7B-Instruct [17], that generates text descriptions.

 18

Figure 3: Overview of the baseline [12] framework. The pipeline consists of three training stages.

3.3.1 Stage 1: EEG Encoder Training

The first stage trains a neural network to process raw EEG recordings and convert

them into meaningful representations. The encoder used here is ChannelNet [18], a CNN

architecture designed specifically for visual classification [19] from multi channel time-

series data like EEG. The ChannelNet encoder architectureprocesses EEG signals through

three main components:

Temporal Block: This part handles the time dimension of EEG signals. It uses five

parallel convolutional layers with different dilation rates (1, 2, 4, 8, 16), which lets the

network capture both quick changes and longer patterns in brain activity. Each layer uses

1×33 kernels that slide along the time axis. The output from all four layers gets

concatenated together, giving the network features at multiple time scales.

Spatial Block: After temporal processing, the spatial block looks at relationships between

different electrode positions on the scalp. It uses four parallel branches with different

kernel sizes to capture both local activity (from nearby electrodes) and broader patterns

 19

(across distant electrodes). This multi-scale approach helps the network understand

spatial patterns in brain activity.

Residual Blocks: Finally, four residual blocks refine the extracted features. Each block

has two 3×3 convolutional layers with skip connections that help with training stability.

Between blocks, downsampling layers gradually reduce the spatial and temporal

dimensions. At the end, a 1×1 convolution compresses everything down to 50 channels.

Creating the EEG Embedding: The final CNN output gets flattened and passed through

a linear layer to create a 512-dimensional embedding. This compact representation

captures the essential information about what the person saw, encoded in their brain

activity.

3.3.2 Stage 2: Alignment with CLIP

Stage 2 connects EEG representations to visual concepts using Contrastive

Language Image Pretraining (CLIP), a model pretrained on millions of image-text pairs.

CLIP stays frozen during training - we don't change its weights at all. Instead, we train

the EEG encoder to produce embeddings that match CLIP’s image embeddings.

How CLIP Works: CLIP processes images using a Vision Transformer that splits each

image into small patches and analyzes them with self-attention. For our 224×224 images,

CLIP produces 512-dimensional embeddings that capture high-level visual concepts.

These embeddings serve as targets for the EEG encoder to match.

The encoder learns from two losses simultaneously:

MSE Loss: Mean squared error (MSE) loss measures how close the EEG embedding is

to CLIP’s image embedding. By minimizing this distance, the encoder learns to map brain

signals to the same semantic space that CLIP uses for images, and that is how it

encourages semantic alignment.

Classification Loss: A separate linear classifier tries to predict which of the 40 object

categories the person was viewing. This cross-entropy loss ensures the encoder learns

discriminative features that can distinguish between different objects.

The total loss is simply:

𝐿total = 𝐿MSE + 𝐿CE (1)

 20

where, 𝐿total is the combined loss function; 𝐿MSE is the mean squared error loss measuring

the distance between EEG and CLIP image embeddings (encouraging semantic

alignment), and 𝐿CE is the cross-entropy classification loss for predicting the viewed

object category from 40 different classes.

3.3.3 Stage 3: Text Generation with LLM

The final stage connects the trained EEG encoder to a large language model. This

involves two new components: (i) a projection layer that bridges the dimensional gap,

and the LLM itself that generates text.

Projection Layer: The EEG encoder outputs 512-dimensional embeddings, but Mistral-

7B expects 4096-dimensional inputs. A learned linear projection handles this

transformation:

ℎLLM = 𝑊proj × 𝑒EEG + 𝑏proj (2)

where, ℎLLM is the projected vector fed into the language model; 𝑊proj is the learned linear

projection matrix (mapping the encoder’s embedding space to the LLM input space), 𝑒EEG

is the 512 dimensional embedding produced by the EEG encoder, and 𝑏proj is the learned

bias term.

This projection layer is the key interface between brain signals and language generation

since it translates EEG representations into something the LLM understands.

3.3.4 Problem Formulation and Why We Need a Better Encoder

While the state-of-the-art Thought2Text [12] framework demonstrates effective

EEG-to-Text translation; the ChannelNet encoder has an inherent limitation: CNNs

process signals through local receptive fields, making it difficult to capture long-range

temporal dependencies in EEG data. Brain activity patterns often span extended time

periods (for example, sustained attention or gradual changes in neural state), which may

be missed by purely convolutional approaches. This limitation motivates our proposed

enhanced encoder architecture (Section 3.4), which adds Transformer layers to explicitly

model global dependencies through self-attention [10] mechanisms while maintaining

ChannelNet’s strength in local feature extraction.

 21

3.4 Proposed Methodology

Although the baseline encoder [12] provides strong performance in local feature

extraction, it remains limited in its abilitiy to capture long-range patterns in EEG signals.

CNNs only look at nearby values in each layer, so they tend to miss important global

context. To address this, we propose a an enhanced encoder architecture that keeps

ChannelNet’s strong local feature extraction but adds Transformer layers to model global

dependencies across the entire temporal sequence. As illustrated in Figure 4, the model

first uses ChannelNet to extract local spatiotemporal EEG features, which CNNs handle

effectively but only within limited receptive fields. This means long range temporal

structure may be overlooked. To overcome this limitation, the architecture incorporates

Transformer layers after the CNN feature extractor, enabling the model to capture global

dependencies across the entire sequence while preserving ChannelNet’s strong local

feature extraction.

Figure 4: Proposed CNN–Transformer encoder architecture. ChannelNet extracts local EEG features
within limited receptive fields, after that a sequence projection and positional encoding enable
Transformer layers to model global temporal relationships across the entire EEG sequence.

3.4.1 Architectural Motivation

EEG signals have structure at multiple time scales. Quick events like sudden

attention shifts need local processing, which CNNs handle well. But other patterns such

as sustained focus or gradual changes in mental state span longer time periods, and require

 22

looking at the whole sequence at once. Transformers are perfect for this because they use

self-attention to compute relationships between all positions in a sequence

simultaneously. However, applying Transformers directly to raw EEG (with 440 time

points) would be computationally expensive. Our proposed approach solves this by using

the CNN to first compress the signal down to a shorter sequence (~27 time steps), then

applying Transformers to this compact representation. This gives us the best of both

worlds: i. CNN layers extract local temporal and spatial features efficiently, ii.

Transformer layers model global context and long-range dependencies, iii. The two

components work together in a single architecture.

3.4.2 CNN-to-Transformer Transition

Our architecture starts with ChannelNet that produces a feature map with shape

(batch, 50, 8, 27), where 50 is the number of channels, 8 is the reduced spatial dimension,

and 27 is the compressed temporal length. To feed this into Transformer layers, we need

to convert it into a sequence format. We do this by treating the width dimension (27) as

the sequence length and flattening the channel and height dimensions (50 × 8 = 400) into

the feature dimension at each time step. This gives us a sequence of shape (batch, 27,

400). Next, a learned linear projection maps each 400-dimensional time step to 256

dimensions, which is the internal dimension our Transformer uses. This projection serves

two purposes: it reduces the feature size for efficiency, and it provides a learnable

adaptation layer between the CNN and Transformer components.

Transformers process all sequence positions in parallel, so they don’t inherently know the

order of time steps. To give the model temporal awareness, we add positional encodings

to the sequence before the Transformer layers. We use sinusoidal positional encodings.

This works by assigning each position a unique pattern of sine and cosine waves. For

position t and dimension i, and model dimension d, the encoding is:

sin ൭
𝑡

10000
ଶ௜
ௗ

൱
(3)

cos ൭
𝑡

10000
ଶ௜
ௗ

൱
(4)

These patterns help the model understand temporal distance - nearby positions have

similar encodings, while distant positions have more different encodings. The sinusoidal

 23

approach has a nice property: it can handle sequence lengths the model hasn’t seen during

training, and it doesn’t require any learnable parameters.

3.4.3 Transformaer Encoder Layers

After adding positional encodings, the sequence passes through four Transformer

encoder layers. Each layer has two main components:

Multi-Head Self-Attention: This is where the model looks at relationships between all

time steps. We use 8 attention heads, each working in a 32-dimensional subspace (256 /

8 = 32). The attention mechanism works like this:

1. For each position, compute how similar it is to every other position.

2. Normalize these similarities into weights that sum to 1.

3. Use the weights to create a new representation as a weighted average.

The multi-head setup lets different heads focus on different types of patterns. For

example, one head might focus on nearby time steps while another looks at distant

relationships.

Feed-Forward Network: After attention, each position passes independently through a

small neural network. This network has two linear layers with a GELU activation in

between. The inner dimension is 1024 (4× the model dimension), which gives the network

enough capacity to transform features in complex ways. Both sub-layers use a few

important tricks for stable training:

1. Layer normalization before each sub-layer (pre-norm architecture)

2. Residual connections that add the input to the output

3. Dropout (rate 0.1) for regularization

The four stacked layers let the model build increasingly abstract representations. Early

layers might focus on local patterns, while later layers integrate information across the

entire sequence. After all four Transformer layers, we have a sequence of shape (batch,

27, 256). To get a single embedding per EEG trial, we use mean pooling. It just takes the

average across all 27 time steps. This gives us one 256-dimensional vector that

summarizes the entire sequence.

 24

Finally, we project this vector up to 512 dimensions to match the expected embedding

size for the rest of the pipeline. This projection includes layer normalization to keep the

output distribution stable. The final 512-dimensional embedding represents the EEG

signal with both local features (from the CNN) and global context (from the Transformer).

3.5 Training Pipeline

We train and implement the enhancded encoder architecture in three stage

approach. Figure 5 illustrates the complete training pipeline, showing how the stages

work together: from training the encoder to generating text from the eeg embeddings;

each stage has a specific learning objective, and training them sequentially prevents

interference between different goals.

Figure 5: Complete overview of training pipeline for the proposed EEG-to-Text generation system.

 25

3.5.1 Training the Encoder

In the first stage, we train our proposed CNN-Transformer encoder from scratch

so that the encoder learns to produce 512-dimensional embeddings that both align with

CLIP’s visual representations and contain discriminative information for object

classification. The training uses EEG signals that have been filtered to the 5-95 Hz

frequency range, with data splits organized by unique images rather than by subject. This

ensures the model learns to generalize across different visual stimuli rather than

memorizing specific examples. We train with a batch size of 8 samples for 100 epochs,

using the learning rate of 5×10⁻⁵.

The encoder learns from two loss functions simultaneously. The MSE loss measures the

squared Euclidean distance between EEG embeddings and CLIP image embeddings,

encouraging the encoder to map brain signals into the same semantic space that CLIP

uses for visual concepts. The classification loss uses cross entropy to train a linear

classifier that predicts which of the 40 object categories the person was viewing. We

combine these objectives with equal weight, so the total loss is simply the sum of MSE

and classification losses. During each training iteration, we extract EEG embeddings

using the encoder and obtain CLIP image embeddings from the corresponding visual

stimuli. CLIP remains frozen throughout this stage, serving only as a source of target

embeddings. We compute both the MSE loss between embeddings and the classification

loss from the encoder’s classifier head, then backpropagate the combined loss to update

only the encoder’s parameters. This includes all CNN layers, Transformer layers, and the

classification head. By the end of this stage, the encoder produces 512 dimensional EEG

embeddings capturing both CLIP aligned semantic structure and object discriminative

features. The following script was used for training:

python train_eeg_classifier.py \

 --eeg_dataset data/block/eeg_55_95_std.pth \

 --splits_path data/block/block_splits_by_image_all.pth \

 --output ./hybrid_eeg_encoder \

 --image_dir data/images/ \

 --batch_size 8 \

 --num_epochs 100 \

 --learning_rate 5e-5

 26

3.5.2 LLM Fine-Tuning

After training the EEG encoder, we connect it to a large language model for

caption generation. The next two stages are executed in one script but represent two

separate fine-tuning phases: first with image embeddings, then with EEG embeddings.

Both stages follow the same training setup to ensure consistency. The following script(s)

(It was slightly modified based on whether we are using DeepSeek or Mistral) was

prepared to complete the finetuning phase:

python finetune_llm.py \

 --eeg_dataset data/block/eeg_55_95_std.pth \

 --splits_path data/block/block_splits_by_image_all.pth \

 --eeg_encoder_path ./hybrid_eeg_encoder \

 --image_dir data/images/ \

 --output deepseek_chat_hybrid_eeg_model \

 --llm_backbone_name_or_path deepseek-ai/deepseek-llm-7b-chat \

 --load_in_8bit \

 --bf16 \

 --batch_size 2 \

 --gradient_accumulation_steps 32

We train with a batch size of 2 and accumulate gradients over 32 steps (effective batch

size 64). Each stage runs for 5 epochs using 1×10⁻⁵ learning rate.

Image based fine-tuning stage: This stage trains the projection layer to condition the

LLM on visual information using image-caption pairs. CLIP produces a 512-dimensional

image embedding, which is transformed by the projection layer before entering the frozen

LLM. Training examples following the Mistral instruction format:

“[INST] You are a helpful assistant. <image> <object_label> Describe this image in one

sentence: [/INST]” followed by the caption target.

The <image> token is replaced by the processed embedding, and <object_label> is filled

with the category label (e.g., cat, airplane). Loss is computed only over the caption text.

This stage teaches the projection layer how to express visual concepts in the LLM’s

language space. That learned mapping becomes the foundation for EEG-based generation

in the next stage.

 27

EEG Based Fine-Tuning Stage: At this next stage, training continues automatically with

EEG embeddings. Before starting, we filter the training data by using the encoder to

classify all examples and keeping only those where the predicted label matches the ground

truth. This keeps about 60–70% of samples but ensures that the input embeddings truly

reflect the viewed object. The projection layer now learns to map EEG derived

embeddings into the same semantic space it learned for images. The category label

included in the prompt still provides useful guidance to the model.

By the end of this stage, the system can generate coherent descriptions directly from

recorded EEG responses to visual stimuli.

3.5.3 Implementation Details

We implement the training pipeline using the HuggingFace Transformers library.3

It provides standardized interfaces for model loading, tokenization, and training loops.

The Trainer API automatically handles gradient accumulation, mixed precision training,

and checkpoint saving, which simplifies our implementation and ensures best practices.

The small batch size of 2 combined with large gradient accumulation of 32 steps gives us

an effective batch size of 64. This approach lets us train with limited GPU memory while

still benefiting from the stability that larger batches provide. The 8-bit quantization

applied to the LLM is crucial for feasibility. All of the implementation was done on the

lightning.ai platform leveraging the computation capability of the NVIDIA L4 GPU.

With our configuration, Stage 1 takes approximately 7 hours to run for 100 epochs. The

finetuning stages take approximately 5 and 3 hours respectively. The actual training time

depends on the specific GPU model and parameter configuration.

3.6 Evaluation Setup

After training, we evaluate the complete pipeline on held out test data that wasn’t

seen during any training stage. The evaluation assesses how well the system can generate

3 The complete implementation steps, including training scripts and model configurations, is

available at: https://github.com/Sadi-Mahmud-Shurid/DecodingBrainwaves

 28

text descriptions from EEG signals and how effectively the encoder captures object

information from brain activity.

3.6.1 Inference Protocol

At test time, the system receives a raw EEG recording and generates a text

description without any access to ground-truth information. The inference process

follows a straightforward pipeline. First, we preprocess the EEG signal by extracting the

20 to 460 millisecond time window from stimulus onset and normalizing each of the 128

channels independently. This preprocessing matches exactly what was done during

training. Next, the preprocessed EEG passes through the frozen combined encoder to

obtain a 512-dimensional embedding. This embedding captures the neural representation

of what the person saw, encoded in a semantic space aligned with visual concepts through

the training process. The embedding then passes through the learned projection layer,

which transforms it from 512 dimensions to 4096 dimensions to match the LLM’s

expected input space.

We insert the projected embedding into the prompt template along with the object label,

following the same format used during training. The prompt structure is: “[INST] You

are a helpful assistant. <image> <object_label> Describe this image in one sentence:

[/INST]” where <image> is replaced with the projected EEG embedding and

<object_label> contains the category name. The frozen LLM then generates a text

description with a maximum generation length of 64 tokens.

As a side output, the encoder also produces classification logits for all 40 object

categories. We take the argmax over these logits to obtain the predicted object category,

which allows us to compute classification accuracy as an additional measure of how well

the encoder captures stimulus information. In Figure 6, we can observe the inference: the

word after suffix is the the classified object, followed by an instruction. Then below the

warning we can we can notice our generated output based on what the person saw while

he was looking at the image; and also the expected output string. After completing all the

1987 iterations, the outputs gets saved in a csv file (including the classified object and

outputs generated against the expected output) which is later used for our metrics based

evaluations. The used metrics will be explained in the next section, and the results will

be discussed in the next chapter.

 29

Figure 6: Terminal screenshot showing inference outputs for samples from 296 to 300 out of 1987,
including classified object, expected output and generated output.

3.6.2 Evaluation Metrics

To quantitatively evaluate the output performance of our EEG-to-Text translation,

we have used several standard evaluation metrics. These include BLEU [16], METEOR

[20], ROUGE-L [21], and BERTScore [22]. Each of these measure a different aspect of

similarity between the generated text and the reference caption. We compare the results

of our proposed model within its frameowrk and also against the existing models. The

following subsections will clarify the chosen metrics, how these metrics work and the

context in detail.

BLEU: BLEU [16] (bilinguan evaluation understudy) is one of the common metrics used

to judge the quality of machine translation. However, it can be considered a bit outdated

now, or maybe useful depending on usecases. It works by counting lexical overlap,

meaning counting overlapping sequence of words (n grams) between the generated output

and the textual reference. For example, BLEU-1 counts matching single words (also

called unigrams), while BLEU-4 counts matching sequences of four words. BLEU

 30

heavily emphasises exact lexical overlap, therefore, a high BLEU score indicates the

model reproduced many of the same words or phrases like the reference. However, this

also means BLEU is relatively insensitive to paraphrasing. Because using different words

with the same meaning won’t score high unless there is exact word overlap. Notably,

BLEU’s stringency grows with the n-gram order. In fact, BLEU-4 can drop to zero if the

generated sentence and reference share fewer than four consecutive words. This is a

pertinent issue in our task. Suppose if a model’s output is very short or lacks longer

phrases in common with the reference, the BLEU-4 score will be closer and closer to

zero. In practice, because DeepSeek-7B-Chat [4] (one of the LLMs that we tested in our

model) often outputs very brief descriptions in our experiment (sometimes only a couple

of words), its BLEU-4 score is frequently minimal, underscoring this limitation of BLEU.

METEOR: METEOR (Metric for Evaluation of Translation with Explicit Ordering) [20]

was introduced to address some of the weknessses of BLEU. To be specific, this was to

be done by considering synonymy and morphological variations [20]. METEOR [20]

aligns the generated text with the reference in a more flexible manner. This allows

matches not only on exact words but also on stemmed forms and synonyms (for example,

“run” vs. “running”). It then computes a harmonic mean of precision and recall of

unigrams [20], with a higher weight for recall and a penalty for inadequate alignment.

This means METEOR rewards a system for finding many of the reference words (recall),

while also ensuring the generated words are mostly accurate (precision). Because of these

features, METEOR [20] tends to correlate better with human judgments in many cases

than raw BLEU [16]. Specially when the model uses different yet acceptable wording.

Nevertheless, METEOR still fundamentally relies on lexical overlap. It improves over

BLEU by catching some synonyms, but it will still penalize the omission of content words

present in the reference. If the output is much shorter than the reference (missing many

expected words), METEOR will drop significantly due to recall penalties.

ROUGE-L: ROUGE-L or Recall-Oriented Understudy for Gisting Evaluation [21] is a

recalling focused metric. It was originally developed for the evaluation of automatic

summarization [21]. ROUGE-L measures the length of the Longest Common

Subsequence (LCS) [21] and compares them between the generated text and the sentences

or captions. Rather than requiring contiguous words, it finds the longest word sequence

that occurs in both texts in the same order (not necessarily consecutively). This effectively

captures how much of the reference’s content is covered by the output in order, which is

 31

called focusing on recall of information [21]. A higher ROUGE-L score means that a

larger portion of the reference’s information (in terms of ordered words or phrases) is

present in the generated sentence. Like BLEU and METEOR, ROUGE-L is also grounded

in surface level overlap or lexical overlap of to some extent. It does not account for

synonyms or rephrasings beyond exact 25 word matches. A shorter output will naturally

have a shorter common subsequence (meaning shorter LCS) with the reference, and thus

a lower ROUGE-L. In my case, if the model only produces a few words, whereas the

reference is a longer sentence, the longest common subsequence might be just that one or

two word, which ultimately will lead to a relatively limited ROUGE-L score. In my

observation, among my two tested models (Mistral and DeepSeek), Mistral generates

more expressive and longer outputs compared to DeepSeek, therefore, Mistral naturally

has an edge over DeepSeek on this LCS based measure.

BERTScore: While BLEU [16], METEOR [20], and ROUGE-L [21] largely assess

lexical overlap (exact or slightly flexible word matching), BERTScore [22] provides a

complementary semantic evaluation. BERTScore [22] uses contextualised embeddings

from a pretrained language model (BERT or similar) to compare the generated text and

reference at the level of meaning [22]. In this approach each sentence is represented as a

set of vector embeddings for its words (or tokens) and the metric computes a soft

alignment between these sets to determine how much competent the model’s outputs are

in terms of meaning compared to the reference. Crucially BERTScore can detect semantic

equivalence even when different words are used. For instance, “a man riding a bicycle”

vs “a person on a bike” could score high on BERTScore despite having few exact words

in common. This makes BERTScore [22] more tolerant to paraphrasing and variation in

wording than the previous three metrics. It addresses cases where the model output

captures the correct idea but with different vocabulary or phrasing. A high BERTScore

indicates that the generated caption embeds to a similar vector space position as the

reference caption, signifying strong semantic similarity.

Overall, by combining these four metrics we evaluate both the surface level accuracy (did

the output use the same words as the reference?) and the semantic accuracy (did the

output convey the same meaning as the reference?).

 32

4 Results and Discussion

This chapter presents the quantitative and qualitative evaluation of our proposed

architecture for EEG-to-Text generation. We compare our approach against the

Thought2Text [12] framework across multiple evaluation metrics, demonstrating the

effectiveness of incorporating Transformer layers for capturing global temporal

dependencies in brain signals. We also evaluate the performance of multiple LLMs within

our proposed framework. All evaluation metrics are presented as percentages for clarity.

4.1 Quantitative Analysis

We evaluated text generation quality using four established metrics. Each metric

captures different aspects of similarity between generated and reference captions. We also

measured the encoder’s object classification accuracy as a direct assessment of its

representational capacity. We integrated and tested our proposed encoder with two

language models: Mistral-7B-Instruct [17] and DeepSeek-7B-Chat [4], evaluating

whether architectural improvements generalize across different model backbones. Figure

7 presents a comprehensive comparison across all metrics.

Figure 7: Quantitative performance comparison across all evaluation metrics (shown as percentages).
The proposed enhanced CNN-Transformer architecture paired with both Mistral-7B-Instruct and
DeepSeek-7B-Chat models is compared against the baseline [12] system. Note that the baseline scores are
paired with Mistral-7B-Instruct.

 33

Figure 7 shows that our architecture consistently outperforms the baseline across all

metrics. The proposed architecutre configured with Mistral achieves the best overall

performance with improvements in almost every metric, suggesting that Transformer

layers genuinely enhance the encoder’s ability to capture meaningful information from

EEG signals.

4.1.1 BLEU-1 and BLEU-4 Scores

BLEU [16] scores measure lexical overlap between generated and reference texts.

BLEU-1 counts matching individual words while BLEU-4 requires matching four word

sequences. Our proposed model integrated with Mistral-7B-Instruct [17] achieves BLEU-

1 of 27.0%, compared to 26.0% for the baseline. A relative improvement of 3.8%. While

seemingly modest, this is meaningful given the inherent noise in EEG signals. Our mode

with DeepSeek scores 26.1%, still above baseline despite its tendency toward shorter

outputs. For BLEU-4, the proposed model integrated with Mistral scores 6.7% versus the

baseline’s 6.1%, representing a 9.8% relative improvement. Our architecture with

DeepSeek achieves 6.2%, slightly exceeding the baseline. The BLEU-4 improvement is

particularly significant. This metric easily drops to near zero for brief outputs or

mismatched word sequences, even with correct meaning. The fact that our architecture

improves BLEU-4, it suggests better phrase alignment.

4.1.2 ROUGE-L Scores

ROUGE-L [21] measures the longest common subsequence between texts,

focusing on recall without requiring consecutive words. This flexibility better captures

content coverage. The introduced with Mistral achieves 29.0% versus the baseline’s

28.0%, a 3.6% relative improvement indicating better content coverage. The model

includes more key information from reference captions, suggesting the enhanced encoder

captures more complete stimulus information. The designed architecure with DeepSeek

model scores 27.6%, slightly below baseline, explained by DeepSeek’s very brief outputs

that naturally limit subsequence length.

The ROUGE-L [21] improvement validates our architectural choice to add global context

modeling. Local CNN features may miss sustained neural responses spanning the entire

temporal window. Transformers ensure these extended patterns contribute to the final

embedding, producing more comprehensive descriptions.

 34

4.1.3 METEOR Scores

METEOR [20] considers synonyms and word stems while balancing precision

and recall, making it more sophisticated than BLEU. The presented architecure with

Mistral achieves 27.6% compared to approximately 26.2% for the baseline causing a

5.3% relative improvement. It is the largest gain among lexical overlap metrics. The

adopted model with DeepSeek scores 26.3%, somewhat matching baseline performance.

The METEOR [20] score improvement is particularly significant because it captures both

exact matches and semantic variations. Our model showing the best improvement on this

metric (among the lexical overlap based metrics) suggests the enhanced encoder helps

generate appropriate paraphrasing, not just memorized word patterns. This indicates that

global context from Transformer layers helps the system understand the semantic concept

behind visual stimuli.

4.1.4 BERTScore

BERTScore uses contextual embeddings from BERT to measure semantic

similarity rather than counting word overlaps [22]. This makes it valuable for assessing

whether descriptions convey the same meaning with different wording.

Our architecture shows strongest performance on BERTScore. Our designed model with

Mistral achieves 91.0%, while integrated with DeepSeek, it reaches 90.0%. The baseline

scores 89.0% on the same metric. These high scores indicate generally good semantic

understanding across all systems, but the improvements remain meaningful, that is 2.2%

and 1.1% relative improvement respectively.

These BERTScore [22] improvements provide compelling evidence that our architectural

modifications enhance semantic understanding for decoding brainwaves to text. The

metric’s tolerance to paraphrasing means it specifically measures conceptual accuracy,

not just word matching. Consistent improvement across both language models in our

expirement, suggests the enhanced encoder provides better semantic representations

regardless of decoder characteristics. Figure 8 provides a focused view of architectural

impact.

 35

Figure 8: Architectural impact of adding Transformer layers in the encoder. Left panel shows text
generation metrics with annotations indicating relative improvement percentages over baseline. Right
panel compares classification accuracy.

4.1.5 Object Classification Accuracy

Beyond text generation, we measured encoder classification accuracy as a direct

assessment of how well it extracts stimulus information from brain signals before

language model involvement. Both of our architectures achieve identical 58.1% (Figure

7) overall classification accuracy versus 53.0% overall for baseline [12] (Figure 7 and

Figure 8). It is a substantial 9.6% relative improvement. This is highly significant in EEG

classification where even small gains require considerable architectural advances. This

improvement directly validates our hypothesis that Transformer layers enhance

representational capacity. The ability to model global dependencies allows better

discrimination between object categories based on subtle brain activity patterns. Brain

responses vary in both local features (quick recognition) and global patterns (sustained

attention, semantic processing). The CNN-only baseline captures local features well but

may miss global patterns.

The identical performance of both our experimented model configurations (58.1%)

confirms that encoder quality is independent of the subsequent language model, which

makes architectural sense since classification occurs entirely within the encoder. The

9.6% relative improvement also explains text generation gains. Meaning better

classification means more discriminative embeddings that provide the language model

 36

with clearer input about visual concepts, thus it ultimately improves in terms of the

quatitative metrics as well.

4.2 Qualitative Analysis

Table 1: Representative samples comparing generated descriptions across models. The proposed
architecture captures more specific object attributes and demonstrates improved semantic understanding
regardless of chosen language model compared to the baseline. Reference captions are shown in black.

Images Reference Captions Baseline + Mistral Proposed + Mistral Proposed + DeepSeek

 A black and gold

grand piano with the

Boston Piano

Company logo.

A black and white

piano with a

microphone in front

of it.

A black grand piano

with a black and

white keyboard.

A grand piano with

a black and white

finish.

 A large yellow

mushroom with a

brown stem and a

brown cap,

surrounded by green

foliage.

A group of

mushrooms growing

on a log.

A colorful, large

mushroom with a

brown cap and white

spots.

A small brown

mushroom growing

on a log.

 A pair of handmade,

knitted gloves with a

mix of brown,

orange, and black

yarn.

A pair of knitted

gloves with a white

background.

A pair of black

leather gloves with a

white stripe on the

back.

Black, knitted

gloves with white

trim.

 A hand holding a

mug with a blue

background and a

handprint design.

A person holding a

coffee mug with the

words “World’s

Best Dad” written

on it.

A white coffee mug

with a white handle

and the words “I’m

not a morning

person” written on

it.

A white coffee mug

and the words

“World’s Best Dad”

written on it.

While quantitative metrics provide objective performance measures, examining actual

generated descriptions reveals how the models differ in practice. Table 1 presents

representative examples from the test set. It compares outputs from the baseline [12]

system and our proposed architectures.

 37

4.2.1 Descriptive Detail and Attribute Capture

Table 1 shows a clear pattern: the architecture introduced in this work gives more

detailed and accurate descriptions than the baseline. For example, in the “piano” image,

the baseline says, “A black and white piano with a microphone in front of it,” even though

no “microphone” is actually present. In contrast, out model integrated with Mistral-7B-

Instruct [17] more accuretly describes “A black grand piano with a black and white

keyboard,” avoiding false details. This suggests that the improved encoder extracts visual

features from brain signals more reliably.

The “mushroom” example shows the same trend. The baseline gives a very general

caption, “A group of mushrooms growing on a log.” While technically correct, it ignores

key visual features. The proposed Mistral version adds specific traits such as “colorful,”

“large,” and “white spots,” indicating that the encoder is capturing more fine grained

information from the EEG. This aligns with our 9.6% relative boost in classification

accuracy. Better object discrimination naturally leads to more detailed descriptions.

The introduced model integrated with DeepSeek-7B-Chat [4] behaves slightly differently.

Its outputs are much shorter, such as “A small brown mushroom growing on a log.”

Although concise, it still includes the essential attributes. This shorter style explains why

DeepSeek performs worse on lexical overlap metrics like BLEU-4 [16] and ROUGE-L

[21], even though it uses the same improved encoder. This difference comes from the

language model’s generation style, not the encoder itself.

4.2.2 Semantic Accuracy and Contextual Understanding

The examples also show that our architecture improved in semantic

understanding, not just descriptive detail. In the “coffee mug” case, the reference caption

mentions a hand holding a mug with a handprint design. The baseline identifies the main

elements but mistakes the handprint for text. The adopted model’s Mistral output, “A

white coffee mug with a white handle and the words “I’m not a morning person” written

on it.,” is still not a perfect match, but it shows the model is trying to interpret both visual

text and the overall scene.

The “glove” example shows a similar pattern. The reference describes handmade gloves

with mixed colors. The baseline reduces this to “knitted gloves with a white background,”

 38

ignoring the color details. The proposed framework with Mistral model instead gives

“black, leather gloves with a white stripe,” which gets the color pattern right and

identifies a specific feature, even though the material is incorrect. This suggests the

encoder is capturing meaningful structural information from the EEG signals, even if the

language model occasionally misinterprets it.

These observations match our 2.2% improvement in BERTScore [22]. Since, BERTScore

measures semantic similarity [22], the slightly higher score reflects that our model

captures the main meaning of objects, even when using different words.

4.2.3 Connecting Qualitative Observations to Proposed Methodology

The qualitative results directly reflect how our architecture processes EEG

signals. When someone looks at an image, the brain responds over time; early activity

represents simple visual features like shapes and colors, while later activity represents

object meaning. The baseline CNN encoder can capture these fast, local patterns. But its

limited receptive field makes it difficult to combine information across the full 440 ms

window [12, 18, 19]. The examples in Table 1 show this limitation. Generic outputs such

as “a group of mushrooms” or “knitted gloves with a white background” suggest that the

baseline mostly captured object category but missed richer details. Our introduced

enhanced encoder fixes this by adding Transformer layers that apply “self-attention”

across the entire sequence. This lets the model link early visual responses with later

semantic signals, resulting in embeddings that represent both the object type and its

specific attributes.

The “piano” example highlights this effect clearly. Identifying a “grand piano” instead

of just “a piano” requires combining information spread over time, which the

Transformer’s global attention [10] supports. This is why the proposed model produces

the more precise term while the baseline does not in this case.

Both our model versions (integrated Mistral [17] and DeepSeek [4]) show similar

improvements in detail and accuracy, even though DeepSeek-7B-Chat [4] tends to

generate shorter outputs. This supports the quantitative findings as well.

These qualitative observations also explain the metric gains. A 3.8% relative

improvement in BLEU-1 [16] may look small, but the examples show that it leads to

 39

clearer object attributes, fewer hallucinations, and more coherent descriptions. Likewise,

the 9.6% relative increase in classification accuracy appears in outputs that correctly

identify object types and their defining features. Even modest numerical gains can

produce meaningful improvements in how well the generated text reflects the information

encoded in brain signals.

 40

5 Conclusion and Future Work

5.1 Summary of Contributions

This thesis presents a comprehensive exploration of decoding brainwaves into

words by integrating large language models with neural networks. It introducdes a

framework that connects low level brain signals to latest language generation techniques.

The core of the work is a three stage translation task that begins with EEG encoding,

followed by cross modal semantic alignment, and ends with prompt based language

generation.

A key innovation of this work is the enhanced encoder architecture that combines the

local feature extraction of the ChannelNet CNN encoder [18] with the global modeling

ability of Transformers [10]. While the CNN captures short, rapid patterns, its limited

receptive field can miss information spread across the 440 ms window. Adding

Transformer layers after the CNN allows the model to learn global relationships through

“self-attention” [10]. It connects early visual signals with later semantic ones and creating

richer embeddings that better represent object categories and attributes.

This architectural change leads to clear performance gains. Classification accuracy rises

relatively by 9.6% (from 53.0% to 58.1%), showing that the encoder learns more

discriminative EEG features. These improvements carry over to text generation, with

consistent metric gains. The benefits apply to both language models that we tested,

Mistral-7B-Instruct [17] and DeepSeek-7B-Chat [4]. It goes to validate that the encoder

upgrade works well regardless of the language model used.

To evaluate the system, the thesis uses standard NLP metrics (BLEU, METEOR,

ROUGE-L, and BERTScore) [16, 20, 21, 22] along with qualitative analysis. The metrics

improve across the board indicating better semantic alignment. The qualitative results

further show that the designed model generates more detailed and accurate descriptions

with fewer hallucinated elements. Comparing Mistral-7B-Instruct [17] and DeepSeek-

7B-Chat [4] also highlights the difference between detailed vs. concise generation styles

while confirming that both benefit from the stronger encoder.

 41

5.2 Limitations and Future Directions

This thesis came across some limitations that also point to promising directions

for future work. One of the biggest challenges comes from the nature of non-invasive

EEG recordings. EEG has a low signal-to-noise ratio and only provides an indirect view

of brain activity. This makes it difficult to extract precise semantic information. In our

experiments, the system could reliably capture broad features, main objects or general

colors; but it often failed to pick up finer details. Improving this may require combining

EEG with other techniques like MEG or using higher density electrode setups that can

record richer neural signals.

Differences between participants also remain a major issue. EEG patterns vary widely

from person to person and can even shift across sessions for the same individual. As a

result, a model trained on one subject may not transfer well to another without extra

calibration. Future studies should look into more generalizable, subject independent

models that perform consistently across users. This will be especially important if such

systems are to be used outside research settings.

Data availability is perhaps the most impactful constraint. Very few public EEG-to-Text

datasets exist, and the dataset used in this thesis includes a limited number of images and

participants. Larger and more diverse datasets which are ideally covering multiple

languages and more subjects, would benefit both this work and the broader research

community. They would allow for training more robust models that can better capture the

complexity of translating brain signals into text.

Despite these challenges, this thesis shows that decoding brainwaves into words EEG is

possible. The architectural choices and evaluation methods developed here form a solid

base for future progress. By improving signal quality, model generalization, dataset scale,

and practical usability, decoding brainwaves and EEG-to-Text generation can move

closer to real world applications in communication support and brain-computer

interfaces.

 42

6 Publication

[1] Mohammed Salah Al-Radhi, Sadi Mahmud Shurid, Géza Németh, “Prompting the
Mind: EEG-to-Text Translation with Multimodal LLMs and Semantic Control,”
27th International Conference on Speech and Computer (SPECOM). Lecture
Notes in Computer Science, Szeged, Hungary, pp. 52–66, 2025.doi:
https://doi.org/10.1007/978-3-032-07956-5_4.

[2] Sadi Mahmud Shurid, “Semantically Controlled EEG-to-Text Translation Using
Deep Learning and LLMs,” TDK Conference, 2025. (3rd Prize)

 43

References

[1] J. G. Makin, D. A. Moses, and E. F. Chang, “Machine translation of cortical
activity to text with an encoder–decoder framework,” Nature Neuroscience, vol.
23, no. 4, pp. 575–582, Mar. 2020, doi: 10.1038/s41593-020-0608-8.

[2] A. Kamble, P. H. Ghare, and V. Kumar, “Classifying Phonological Categories and
Imagined Words from EEG Signal,” Biomedical Signal Processing for Healthcare
Applications, pp. 93–121, May 2021, doi:
https://doi.org/10.1201/9781003147817-5.

[3] C. Herff and T. Schultz, “Automatic Speech Recognition from Neural Signals: A
Focused Review,” Frontiers in Neuroscience, vol. 10, Sep. 2016, doi:
https://doi.org/10.3389/fnins.2016.00429.

[4] “deepseek-ai/deepseek-llm-7b-chat · Hugging Face,” Huggingface.co, Aug. 16,
2024. https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat.

[5] M. Marino and D. Mantini, “Human brain imaging with high‐density
electroencephalography: Techniques and applications,” The Journal of
Physiology, Aug. 2024, doi: 10.1113/jp286639.

[6] L. A. Farwell and E. Donchin, “Talking off the top of your head: toward a mental
prosthesis utilizing event-related brain potentials,” Electroencephalography and
Clinical Neurophysiology, vol. 70, no. 6, pp. 510–523, Dec. 1988,
doi: 10.1016/0013-4694(88)90149-6.

[7] F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V.
Shenoy, “High-performance brain-to-text communication via
handwriting,” Nature, vol. 593, no. 7858, pp. 249–254, May 2021,
doi: 10.1038/s41586-021-03506-2.

[8] A. Défossez, C. Caucheteux, J. Rapin, O. Kabeli, and J.-R. King, “Decoding
speech perception from non-invasive brain recordings,” Nature Machine
Intelligence, vol. 5, no. 10, pp. 1097–1107, Oct. 2023, doi: 10.1038/s42256-023-
00714-5.

[9] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied
to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-
2324, Nov. 1998, doi: 10.1109/5.726791.

[10] A. Vaswani et al., “Attention Is All You Need,” arXiv.org, 2017.
https://arxiv.org/abs/1706.03762

[11] V. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J.
Lance, “EEGNet: a compact convolutional neural network for EEG-based brain
computer interfaces,” Journal of Neural Engineering, vol. 15, no. 5, p. 056013,
Jul. 2018, doi: https://doi.org/10.1088/1741-2552/aace8c.

 44

[12] A. Mishra, S. Shukla, J. Torres, J. Gwizdka, and S. Roychowdhury,
“Thought2Text: Text Generation from EEG Signal using Large Language Models
(LLMs),” in Findings of the Association for Computational Linguistics: NAACL
2025, Albuquerque, New Mexico, Apr. 2025, pp. 3747–3759. doi:
10.18653/v1/2025.findings-naacl.207.

[13] W. Liao, H. Liu, and W. Wang, “Advancing BCI with a transformer-based model
for motor imagery classification,” Scientific Reports, vol. 15, no. 1, Jul. 2025, doi:
https://doi.org/10.1038/s41598-025-06364-4.

[14] M. A. Pfeffer, S. Sai, and J. Kwok, “Exploring the frontier: Transformer-based
models in EEG signal analysis for brain-computer interfaces,” Computers in
Biology and Medicine, vol. 178, pp. 108705–108705, Aug. 2024, doi:
https://doi.org/10.1016/j.compbiomed.2024.108705.

[15] A. Q. Jiang et al., “Mistral 7B,” arXiv.org, Oct. 10, 2023.
https://arxiv.org/abs/2310.06825

[16] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a Method for
Automatic Evaluation of Machine Translation,” Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics - ACL ’02, 2002, doi:
https://doi.org/10.3115/1073083.1073135.

[17] “mistralai/Mistral-7B-Instruct-v0.3 · Hugging Face,” huggingface.co.
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

[18] S. Palazzo, C. Spampinato, I. Kavasidis, D. Giordano, J. Schmidt and M. Shah,
"Decoding Brain Representations by Multimodal Learning of Neural Activity and
Visual Features," in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 11, pp. 3833-3849, 1 Nov. 2021, doi:
10.1109/TPAMI.2020.2995909.

[19] C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, M. Shah, and N. Souly,
“Deep Learning Human Mind for Automated Visual Classification,” arXiv
(Cornell University), Jan. 2016, doi: https://doi.org/10.48550/arxiv.1609.00344.

[20] S. Banerjee and A. Lavie, “METEOR: An Automatic Metric for MT Evaluation
with Improved Correlation with Human Judgments,” ACLWeb, Jun. 01, 2005.
https://aclanthology.org/W05-0909/

[21] C.-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,”
aclanthology.org, Jul. 01, 2004. https://aclanthology.org/W04-1013/

[22] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “BERTScore:
Evaluating Text Generation with BERT,” arXiv:1904.09675 [cs], Feb. 2020,
Available: https://arxiv.org/abs/1904.09675

 45

Annex

I. Declaration on the Use of Generative Artificial Intelligence

I have not used any generative AI tools.

I have used generative AI tools. I have verified the content generated by AI, ensured
the accuracy of the outputs, and properly indicated each instance of use in the table
below.

Usage type
Name of Generative AI

Tool(s)

Affected Sections

(chapter, page number,

reference)

Estimated Proportion of

Use (per usage type)

Literature Review
ChatGPT

Sections 2.1, 2.2,

pages 10-14
8-10%

Brief Summary

of the Prompt

Used the deep research feature to find out and study about the recent developments in

neural approaches for EEG-to-Text translation.

Program Code

Generation

Brief Summary

of the Prompt

Generating New Ideas or

Solution Proposals

Brief Summary

of the Prompt

Creating an Outline (text

structure, bullet points)

Brief Summary

of the Prompt

Creating Text Blocks

Brief Summary

of the Prompt

Generating Images for

Illustrative Purposes

Claude Figure 4, page 21 12-15%

Brief Summary

of the Prompt

Took help to draft the Mermaid code for draw.io from my rough drawing.

 46

Data Visualization,

Generating Charts Based

on Data Points

Claude
Figure 7, Figure 8; page

32, 35
12-15%

Brief Summary

of the Prompt

Generate Python matplotlib code for creating grouped bar charts comparing multiple

models across evaluation metrics with proper labeling and annotations.

Preparing a Presentation

Brief Summary

of the Prompt

Other (please specify)

Grammar refinement and

clarity improvement of

own expressions

Google Gemini, ChatGPT

Various sections for

grammar refinement and

clarity improvement

throughout Chapters 3-4.

5-7%

Brief Summary

of the Prompt

Refine technical explanation for clarity while maintaining academic tone for the

following section; check grammar and improve sentence structure for better

understaning.

Aggregated Percentage Value (for the core part of the task) 9-12%

Brief Textual Justification of the Aggregated Value:

I have used generative AI tools to help with small, technical tasks, not to create any of the main research content.

For the literature review, AI helped me pull together and organize ideas from existing papers, but I personally

checked everything against the original sources. When creating data visualizations (Figure 7 and 8), I used AI to

draft some basic Python templates for the comparison charts. However, I had to adapt, populate using my own

results and refine the style as per my requirements and liking. For the diagram in Figure 4, I first drew a draft of it,

then I used generative AI to prepare a mermaid outline based on the draft, after that I had to heavily edit it so it

would correctly reflect the architecture I developed. I also used AI for minor grammar and sentence structure

cleanup. All of the technical experiments, implementing the methods, analyzing the results, and drawing conclusions

are my own. I reviewed and fact checked every AI generated piece to make sure it was accurate and aligned with

what I was trying to achieve.

