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Abstract

Translating brain activity into natural language has become an emerging direction
in brain-computer interfaces, offering new possibilities for assistive communication. Yet,
working with EEG signals remains challenging, as they are often noisy and capture only
an indirect view of the underlying neural processes. These limitations make it difficult
for existing systems to learn both fine-grained patterns and the broader temporal structure

present in brain responses.

This thesis explores an approach that aims to improve EEG-to-Text generation by
introducing an encoder that blends convolutional layers with Transformer based
modeling. The design allows the network to learn short-term features while also capturing
relationships that unfold across the full EEG sequence. The complete framework follows
a three-stage training process, and the system was tested with two different large language
models. Both the quantitative and qualitative evaluations indicate that the enhanced
encoder produces more coherent descriptions than a purely CNN-based baseline. Overall,
the results suggest that incorporating global context modeling can meaningfully

strengthen EEG-to-Text generation.



1 Introduction

Electroencephalography to text (EEG-to-Text) generation is one of the most
recent approaches of brain-computer interfaces (BCls). Its aim is to translate non-invasive

(recorded without penetrating the human body) brain signals into natural language.

Picture of a cat
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Figure 1: The introductory idea of decoding brainwave (in form of EEG) to text.

As illustrated in Figure 1, the process starts from a person observing a visual (an image).
This induces activity in the brain to be measured and recorded via EEG setup. Then it is
to be passed via a “model” (symbolic at this point in Figure 1). In the end the output is
expected in form of a text containing what the person would have probably thought while

looking at the visuals.

1.1 Background and Motivation

BCI research has evolved from early demonstrations of “mental prosthesis”
communication to current efforts at decoding complex thoughts. Early BCIs
predominantly relied on event related potentials [1] and other explicit neural responses to
allow basic communication. Text generation from EEG is a logical next step. It aims to
produce descriptions or sentences reflecting a person’s “thoughts” or “perceptions.”
Early attempts toward this goal have been modest, for instance, classifying a small set of
imagined words from EEG signals [2]. However, with the surge in natural language
processing capabilities, especially with large language models (LLMs), there is a strong
motivation to enable open vocabulary EEG-to-Text generation. Instead of limiting the
user to a fixed dictionary or spelling interface, an LLM based BCI could, in principle,

express any idea the user may have in mind in natural language. This would greatly



enhance the communicative bandwidth of BClIs, benefitting users with speech or motor

impairments by allowing more fluid and semantically rich communication.

However, EEG signals are kind of an indirect reflection of underlying neural activity [3].
Therefore, it is extremely important to ensure proper mapping for EEG-to-Text gneration,
also, structure the language models (e.g. deepseek-1lm-7b-chat [4] in our case) in a proper

way so that the outputs are semantically controlled.

1.2 Thesis Objectives and Structure

This thesis investigates the generation of natural language text (in English) from
EEG signals by proposing an enhanced neural architecture for EEG-to-Text translation
integrated with LLMs. The main aim is to strengthen representation learning by modeling

both short term and long range patterns in brain activity.

Research Objectives: The core objective is to design and test an enhanced encoder that
combines convolutional neural networks (CNN) with Transformer layers. This
architecture is intended to capture complex spatiotemporal patterns in EEG data more
effectively. The work also aims to show that the performance stability of this encoder
architecture integrated with newly released LLM which has not been tested in this kind

of frameworks yet.

Thesis Contributions: This thesis offers three main contributions. Firstly, it proposes a
CNN-Transformer encoder that handles EEG signals more effectively than earlier CNN-
based models. The CNN extracts local features, while the Transformer layers capture
temporal relationships across the full recording window. Then, it evaluates this encoder
with two different LLMs. The results show that the encoder improvement benefits both
models, meaning the gains come from better EEG representations rather than the choice
of language model. Lastly, it provides quantitative and qualitative evidence of
improvements compared to existing baseline; achieving a fair amount of relative increase

in object classification accuracy and improves most text generation metrics.

Thesis Organization: The rest of the thesis is structured as follows. Chapter 2 reviews
related work on EEG based BCls, neural models for EEG processing, and approaches that
link neural data with LLMs. Chapter 3 describes the dataset, baseline system, proposed

encoder, training method, and evaluation setup. Chapter 4 reports the evaluation in details



by discussing the quantitative results and qualitative examples. Chapter 5 concludes with

the main findings, limitations, and potential future work.



2 Related Work

EEG refers to a non-invasive technique for recording brain activity using sensors
placed on the human scalp [5]. By capturing tiny electrical signals produced by neurons,
EEG allows us to peer into a person’s brain activity. Using EEG to generate written text
(essentially translating “thoughts” into words) is an exciting goal with potential
applications in assistive communication (helping paralyzed or non-verbal patients convey

thoughts) and human-computer interaction.

Recording computer

Stimulus computer

Figure 2: Schematic of a typical EEG recording setup [5].

2.1 EEG-to-Text Generation Techniques

Researchers in BCIs have been aiming to translate brain activity directly into
natural language for a long time. The ability to translate a human’s brain signals into text,
or, in other words, reading “thoughts” promises new communication pathways for
individuals with paralysis, disabilities or speech impairments. Early BCI systems,
however, achieved communication in more constrained ways. For example, P300 speller
interfaces allowed users to select letters by focusing attention on flashing choices, relying
on event related EEG responses to output words by one character at a time [6]. Such
systems demonstrated that EEG could be used for communication, but they were slow
and limited to controlled selection tasks rather than language generation from brain

activity.

Being non-invasive, EEG measures the brain’s electrical activity from the scalp and is

considered safe, also portable. However, it presents significant challenges for text
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decoding. EEG signals have low spatial resolution and a poor signal-to-noise ratio. They
vary greatly across individuals. These properties make it difficult to map EEG patterns
reliably to the complex space of words and sentences. In contrast, invasive recording
methods like electrocorticography (ECoG) offer cleaner signals and have shown
remarkable success in neural speech decoding. For instance, researchers have translated
ECoG signals into text by decoding imagined handwriting or synthesizing spoken
sentences from cortical activity [1]. This work demonstrated one of the first encoder and
decoder frameworks that converted ECoG signals directly into text [1]. Similarly, in
another work researchers have enabled a paralyzed patient to communicate at 90
character/minute by decoding neural signals for handwriting into text [7]. These invasive
approaches highlight the potential for brain-to-text communication, but their surgical

requirements make them impractical and inconvenient for widespread use.

With EEG, early efforts toward language output focused on classification tasks rather
than thoughtful sentence generation. Researchers have trained EEG classifiers to
recognize a limited set of words or phonemes that a user is thinking of, for example, by
classifying a small set of vocabulary of imagined words from EEG signals [2]. Other
studies targeted even more elementary units, like identifying phonological categories or
syllable rhythms from EEG. Beyond linguistic content, BCI based on EEG research has
also included tasks like recognizing visual stimuli that a person sees or detects when a
certain keyword is heard. These classification approaches treat brain to text as a
recognition problem (selecting from predefined categories) rather than truly generating

novel sentences based on raw thoughts.

Despite some success in classification, the open-ended generation of natural language
from EEG remained largely uncharted until recent years. The difficulty lies in EEG
signal’s ambiguity. There is no simple or direct mapping from an EEG waveform to a
specific word or sentence. One cannot reliably pinpoint, for instance, an “Aha, the person
just thought of the word aeroplane” moment in a raw EEG signal. This is why most of
the earlier EEG based communication systems either used spelling interfaces or limited
vocabulary classification [2]. In the mid-2010s, Herff and Schultz [3] reviewed the state
of brain-to-text research and highlighted the challenge that even cutting-edge attempts at
EEG-based speech recognition were achieving only modest accuracies on small word sets

[3]. The general consensus was that EEG-to-Text translation required more advanced
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machine learning and likely multimodal assistance to succeed, which set the stage for the

deep learning approaches.

A key development reigniting interest in EEG-to-Text was the rise of deep learning and
language models. By the early 2020s, LLMs had demonstrated an ability to generate
fluent text given appropriate inputs. Researchers began to ask whether those generative
abilities could be exploited to decode brain signals. However, applying LLMs to neural
data is not a straightforward task. An LLM expects inputs in the form of text or similarly
rich representations, whereas EEG signals are noisy time-series data. Bridging this gap

became a focus of this field of the BCI research.

Recent work has shown promising progress by using multimodal alignment techniques
and deep neural networks to translate EEG into a form that an LLM can understand.
Rather than attempting a direct translation from raw EEG-to-Text (which would require
an impractically large training corpus of brain data paired with text), these new
approaches break the problem into different parts. They often involve an intermediate
step of mapping EEG data into a semantic representation, leveraging another modality
such as images or known concepts (We will explore these strategies in Section 2.3 and
will be discussed further in details in the “Methodology” chapter). Notably, in 2023 a
team at Meta Al demonstrated that with proper machine learning models, even non-
invasive recordings can recover surprising amounts of linguistic information [8]. They
decoded heard speech from brain recordings with performance far above chance [8].
While their work used data from magnetoencephalography (MEG) [8] recording and
focused on speech perception (identifying what a person was hearing) rather than
spontaneous speech generation, it provided a promising pathway that modern deep
learning can extract semantic content from non-invasive brain signals. This and similar

advances in neural decoding have set the stage for true EEG-to-Text translation systems.

In summary, earlier EEG-to-Text techniques were constrained to classification and
control paradigms, highlighting the difficulty of the task. Only in the last couple of years
have researchers started to combine powerful neural network encoders with language-
generation models to move beyond classification toward fluent text generation. The
following sections discuss the neural network architectures that make learning useful
EEG representations possible (Section 2.2) and then the multimodal alignment and

prompting approaches that link those representations to language models (Section 2.3).

12



2.2 Neural Architectures for EEG Representation

The central aspect to any EEG-to-Text system is an EEG encoder. An encoder
transforms raw EEG signals into a meaningful internal representation that can be used for
downstream tasks. Designing an effective encoder is challenging because EEG data are
high-dimensional time series with complex spatiotemporal patterns. Modern approaches
use deep neural networks to automatically learn feature representations from the data.
Two classes of neural architecture have proven especially useful for EEG representation:

convolutional neural networks (CNNs) [9] and Transformers [10].

CNNs are a natural fit for EEG because they excel at extracting local patterns from
multivariate signals [11, 12]. In EEG, relevant information is often encoded in temporal
windows (e.g. an oscillation or waveform occurring over a few hundred milliseconds)
and across particular subsets of electrodes. CNNs can capture these patterns through
learned filters that slide over time and across channels. A prime example is EEGNet [11],
a compact CNN architecture introduced for EEG-based BClIs [11]. EEGNet [11] uses
convolutional filters to first capture frequency-specific temporal features (by convolving
along the time dimension) and then spatial filters to capture relationships across EEG
channels [11]. Despite having only a few thousand parameters, EEGNet [11] achieved
competitive performance on a variety of BCI tasks, including event related potential
detection and motor imagery classification. Its success demonstrated that CNNs can learn
efficient representations from raw EEG, often outperforming earlier approaches that

required manual feature extraction.

In the context of EEG-to-Text translation, CNN based encoders have been widely used
in recent frameworks [12]. While CNNs have become a standard tool for EEG feature
extraction, the Transformer [10] architecture offers an alternative that has attracted
increasing attention. Transformers were first developed for language processing, but their
core mechanism “self-attention” is general and can be applied to any sequence data [10].
However, applying Transformers to EEG is non-trivial. Transformers typically have
many more parameters than CNNs, which raises the risk of overfitting, especially given
that EEG datasets tend to be small (often only a few of hours of data or even minutes).
To address this, researchers have explored hybrid models that combine Transformers with
CNN-like elements to get the best of both worlds, for instance, a framework called
EEGEncoder [13] was introduced for motor imagery classification that fuses Temporal

Convolutional Networks with modified Transformer blocks [13]. In their design,
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convolutional layers first extract low-level features and downsample the signal, and then
Transformer style attention layers operate on these features to capture long range
temporal relations [13]. By using a dual-stream architecture (one focusing on temporal
features, one on spatial features) and then merging them, they achieved state-of-the-art
accuracy on a standard motor imagery EEG dataset [13]. This demonstrates a possible

trend of hybrid CNN-Transformer encoders for EEG.

In summary, CNNs remain the workhorse for EEG feature extraction due to their
efficiency and strong track record in BCI tasks, whereas Transformer based models are
an emerging frontier showing potential for capturing more complex patterns in EEG data
[14]. In practice, current EEG-to-Text systems often start with a CNN encoder. Mostly
because successful prior frameworks did so. But researchers are actively exploring the
possibility of combined models to replace or augment the CNN. As we move to
multimodal EEG-to-Text pipelines, the encoder’s job is to produce a representation rich
enough to be mapped to semantic concepts, which both CNNs and Transformers can
achieve. The next section will discuss how such EEG representations are aligned with

other modalities and fed into language models to generate text.

2.3 Multimodal alignments and LLLM based approaches

A crucial challenge in EEG-to-Text translation is linking neural signal
representations to text outputs. Recent approaches address this by introducing a
multimodal alignment phase that trains an EEG encoder to map brain signals into a shared
semantic space compatible with language models. This enables subsequent use of LLMs
to generate text descriptions based on aligned neural embeddings. The Thought2Text [12]
system exemplifies this strategy, adopting a three stage pipeline in which EEG
representations are first aligned with visual features, then used to fine-tune multimodal
captioning models, and finally adapted so that the LLM can generate text directly from
EEG-derived embeddings [12].

In this pipeline, an EEG encoder is trained to produce embeddings that approximate
corresponding image features, facilitating alignment with pretrained vision-language
spaces. Next, an instruction-tuned LLM such as Mistral-7B [15] is fine-tuned on paired

visual and textual data to generate descriptive captions. Finally, the language model is
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further tuned to accept EEG aligned representations as inputs, enabling direct EEG-to-

Text translation during inference.

An important observation from this line of work is that using instruction-tuned LLMs,
such Mistral-7B [15], influences the nature of generated outputs. These models tend to
produce verbose and detailed descriptions, which can inflate overlap-based evaluation
scores like BLEU [16] even if some details are not strictly followed by the observed image

visual.
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3 Methodology

3.1 System Overview

This thesis extends the state-of-the-art Thought2Text [12] framework by adding
architectural improvements to the EEG encoder and testing the system with multiple
language models. We have a three-stage training approach with a proposed encoder to
capture both local patterns (through CNNs) and global context (through Transformers).
The complete pipeline transforms raw EEG recordings into text descriptions through
three main components: (1) a proposed CNN-Transformer encoder that processes brain
signals, (2) a projection layer that connects the encoder to the language model, and (3) an
instruction-tuned LLM that generates the actual text. Unlike simple classification systems
[2, 7], our approach can generate open-ended descriptions directly from neural activity
while keeping up with the global context of brain activity unlike only CNN dependent

encoders such as in the baseline [12].

3.2 Dataset and Preprocessing

3.2.1 Data Source

We use a publicly available EEG dataset' where six people viewed images from
40 different object categories (selected from 1000 different ImageNet? classes). During
data collection, participants saw visual stimuli while their brain activity was recorded
using a 128-channel EEG system. Each trial shows a fixation cross, then the image for
0.5 seconds, followed by a brief rest period. The raw signals were sampled at 1000 Hz
and preprocessed with a 5-95 Hz bandpass filter to keep relevant frequencies while

removing noise.

! https://drive.google.com/drive/folders/1 XqV6MMI28iY XkQOBMEFH{EX1IGmCbgpOu

2 https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/
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3.2.2 Data Preprocessing Pipeline

The preprocessing pipeline implements several transformations to prepare raw
EEG recordings for neural network processing. First, temporal windowing extracts
relevant signal segments corresponding to the visual stimulus presentation. The analysis
focuses on the time interval from 20 to 460 milliseconds post-stimulus onset, capturing
the critical period of visual information processing while excluding early sensory
transients and late cognitive components [12]. The extracted temporal segments undergo
standardization across channels to account for inter-electrode variance in signal
amplitude. Each EEG trial is represented as a tensor of shape (1, 128, 440), where the
first dimension represents the single-channel depth, the second corresponds to the 128
spatial electrodes, and the third captures the 440 temporal samples (equivalent to 440
milliseconds at the original sampling rate). This representation preserves both the spatial
arrangement of electrodes and the temporal dynamics of neural activity. The final curated
dataset maintains sufficient sample diversity for robust model training while adhering to

strict quality standards.

3.3 Baseline Architecture

This section describes the baseline Thought2Text framework [12] that our work
extends. We provide this overview to establish context for our architectural modifications
described in Section 3.3. Figure 3 illustrates the framework which serves as the baseline
for this thesis. The system works in three stages: first, it trains an EEG encoder to
understand brain signals; second, it aligns these signals with visual concepts using CLIP;
and third, it connects everything to an instruction tuned language model, such as Mistral-

7B-Instruct [17], that generates text descriptions.
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Stage 1: EEG Encoder Training
g Neural Network Encoder e |
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Stage 2: Cross-Modal Alignment with CLIP
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Stage 3: Prompt-Conditioned LLM Generation
A 4

Learned Projection Layer

[ Reusable Prompt Template
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Mistral-7B-Instruct-v0.3

A 4

Generated Text Output

Figure 3: Overview of the baseline [12] framework. The pipeline consists of three training stages.

3.3.1 Stage 1: EEG Encoder Training

The first stage trains a neural network to process raw EEG recordings and convert
them into meaningful representations. The encoder used here is ChannelNet [18], a CNN
architecture designed specifically for visual classification [19] from multi channel time-
series data like EEG. The ChannelNet encoder architectureprocesses EEG signals through

three main components:

Temporal Block: This part handles the time dimension of EEG signals. It uses five
parallel convolutional layers with different dilation rates (1, 2, 4, 8, 16), which lets the
network capture both quick changes and longer patterns in brain activity. Each layer uses
1x33 kernels that slide along the time axis. The output from all four layers gets

concatenated together, giving the network features at multiple time scales.

Spatial Block: After temporal processing, the spatial block looks at relationships between
different electrode positions on the scalp. It uses four parallel branches with different

kernel sizes to capture both local activity (from nearby electrodes) and broader patterns
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(across distant electrodes). This multi-scale approach helps the network understand

spatial patterns in brain activity.

Residual Blocks: Finally, four residual blocks refine the extracted features. Each block
has two 3x3 convolutional layers with skip connections that help with training stability.
Between blocks, downsampling layers gradually reduce the spatial and temporal

dimensions. At the end, a 1x1 convolution compresses everything down to 50 channels.

Creating the EEG Embedding: The final CNN output gets flattened and passed through
a linear layer to create a 512-dimensional embedding. This compact representation
captures the essential information about what the person saw, encoded in their brain

activity.

3.3.2 Stage 2: Alignment with CLIP

Stage 2 connects EEG representations to visual concepts using Contrastive
Language Image Pretraining (CLIP), a model pretrained on millions of image-text pairs.
CLIP stays frozen during training - we don't change its weights at all. Instead, we train

the EEG encoder to produce embeddings that match CLIP’s image embeddings.

How CLIP Works: CLIP processes images using a Vision Transformer that splits each
image into small patches and analyzes them with self-attention. For our 224x224 images,
CLIP produces 512-dimensional embeddings that capture high-level visual concepts.

These embeddings serve as targets for the EEG encoder to match.
The encoder learns from two losses simultaneously:

MSE Loss: Mean squared error (MSE) loss measures how close the EEG embedding is
to CLIP’s image embedding. By minimizing this distance, the encoder learns to map brain
signals to the same semantic space that CLIP uses for images, and that is how it

encourages semantic alignment.

Classification Loss: A separate linear classifier tries to predict which of the 40 object
categories the person was viewing. This cross-entropy loss ensures the encoder learns

discriminative features that can distinguish between different objects.

The total loss is simply:

Liotal = Lmsg + Lcg (1)
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where, L, is the combined loss function; Ly;qg is the mean squared error loss measuring
the distance between EEG and CLIP image embeddings (encouraging semantic
alignment), and L¢g is the cross-entropy classification loss for predicting the viewed

object category from 40 different classes.

3.3.3 Stage 3: Text Generation with LLM

The final stage connects the trained EEG encoder to a large language model. This
involves two new components: (i) a projection layer that bridges the dimensional gap,

and the LLM itself that generates text.

Projection Layer: The EEG encoder outputs 512-dimensional embeddings, but Mistral-
7B expects 4096-dimensional inputs. A learned linear projection handles this

transformation:
hiim = Wrej X €grg + Dproj (2)

where, hy 1y is the projected vector fed into the language model; W,,; is the learned linear

projection matrix (mapping the encoder’s embedding space to the LLM input space), eggg

is the 512 dimensional embedding produced by the EEG encoder, and b, is the learned

proj

bias term.

This projection layer is the key interface between brain signals and language generation

since it translates EEG representations into something the LLM understands.

3.3.4 Problem Formulation and Why We Need a Better Encoder

While the state-of-the-art Thought2Text [12] framework demonstrates effective
EEG-to-Text translation; the ChannelNet encoder has an inherent limitation: CNNs
process signals through local receptive fields, making it difficult to capture long-range
temporal dependencies in EEG data. Brain activity patterns often span extended time
periods (for example, sustained attention or gradual changes in neural state), which may
be missed by purely convolutional approaches. This limitation motivates our proposed
enhanced encoder architecture (Section 3.4), which adds Transformer layers to explicitly
model global dependencies through self-attention [10] mechanisms while maintaining

ChannelNet’s strength in local feature extraction.
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3.4 Proposed Methodology

Although the baseline encoder [12] provides strong performance in local feature
extraction, it remains limited in its abilitiy to capture long-range patterns in EEG signals.
CNNs only look at nearby values in each layer, so they tend to miss important global
context. To address this, we propose a an enhanced encoder architecture that keeps
ChannelNet’s strong local feature extraction but adds Transformer layers to model global
dependencies across the entire temporal sequence. As illustrated in Figure 4, the model
first uses ChannelNet to extract local spatiotemporal EEG features, which CNNs handle
effectively but only within limited receptive fields. This means long range temporal
structure may be overlooked. To overcome this limitation, the architecture incorporates
Transformer layers after the CNN feature extractor, enabling the model to capture global
dependencies across the entire sequence while preserving ChannelNet’s strong local

feature extraction.

CNN Feature Extractor

ChannelNet CNN Backb inear Projecti
Input: Raw EEG CHS s SRt CNN Output SestsnessLinear Brolection Positional Encoding
(batch, 1,128, 440) ’ SRer (batch, 50,8, 27) y| (= : (Sinusoidal)
GLREL -Sp::mal et Output: (batch, 27, 256)

Transformer Encoder (4 Layers)

Multi-Head Attention (8 Feed-Forward Network
heads) 256 — 1024 — 256

Mean Pooling
(batch, 27, 256) — (batch,
256)

Final Projection
256 — 512

Output: EEG Embedding
(batch, 512)

Figure 4: Proposed CNN-Transformer encoder architecture. ChannelNet extracts local EEG features
within limited receptive fields, after that a sequence projection and positional encoding enable
Transformer layers to model global temporal relationships across the entire EEG sequence.

3.4.1 Architectural Motivation

EEG signals have structure at multiple time scales. Quick events like sudden
attention shifts need local processing, which CNNs handle well. But other patterns such

as sustained focus or gradual changes in mental state span longer time periods, and require
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looking at the whole sequence at once. Transformers are perfect for this because they use
self-attention to compute relationships between all positions in a sequence
simultaneously. However, applying Transformers directly to raw EEG (with 440 time
points) would be computationally expensive. Our proposed approach solves this by using
the CNN to first compress the signal down to a shorter sequence (~27 time steps), then
applying Transformers to this compact representation. This gives us the best of both
worlds: i. CNN layers extract local temporal and spatial features efficiently, ii.
Transformer layers model global context and long-range dependencies, iii. The two

components work together in a single architecture.

3.4.2 CNN-to-Transformer Transition

Our architecture starts with ChannelNet that produces a feature map with shape
(batch, 50, 8, 27), where 50 is the number of channels, 8 is the reduced spatial dimension,
and 27 is the compressed temporal length. To feed this into Transformer layers, we need
to convert it into a sequence format. We do this by treating the width dimension (27) as
the sequence length and flattening the channel and height dimensions (50 x 8 = 400) into
the feature dimension at each time step. This gives us a sequence of shape (batch, 27,
400). Next, a learned linear projection maps each 400-dimensional time step to 256
dimensions, which is the internal dimension our Transformer uses. This projection serves
two purposes: it reduces the feature size for efficiency, and it provides a learnable

adaptation layer between the CNN and Transformer components.

Transformers process all sequence positions in parallel, so they don’t inherently know the
order of time steps. To give the model temporal awareness, we add positional encodings
to the sequence before the Transformer layers. We use sinusoidal positional encodings.
This works by assigning each position a unique pattern of sine and cosine waves. For

position t and dimension i, and model dimension d, the encoding is:

_ t 3)
sin _ﬂ
100004

t 4)
COS —ﬁ
100004

These patterns help the model understand temporal distance - nearby positions have

similar encodings, while distant positions have more different encodings. The sinusoidal
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approach has a nice property: it can handle sequence lengths the model hasn’t seen during

training, and it doesn’t require any learnable parameters.

3.4.3 Transformaer Encoder Layers

After adding positional encodings, the sequence passes through four Transformer

encoder layers. Each layer has two main components:

Multi-Head Self-Attention: This is where the model looks at relationships between all
time steps. We use 8 attention heads, each working in a 32-dimensional subspace (256 /

8 =32). The attention mechanism works like this:
1. For each position, compute how similar it is to every other position.
2. Normalize these similarities into weights that sum to 1.
3. Use the weights to create a new representation as a weighted average.

The multi-head setup lets different heads focus on different types of patterns. For
example, one head might focus on nearby time steps while another looks at distant

relationships.

Feed-Forward Network: After attention, each position passes independently through a
small neural network. This network has two linear layers with a GELU activation in
between. The inner dimension is 1024 (4% the model dimension), which gives the network
enough capacity to transform features in complex ways. Both sub-layers use a few

important tricks for stable training:
1. Layer normalization before each sub-layer (pre-norm architecture)
2. Residual connections that add the input to the output
3. Dropout (rate 0.1) for regularization

The four stacked layers let the model build increasingly abstract representations. Early
layers might focus on local patterns, while later layers integrate information across the
entire sequence. After all four Transformer layers, we have a sequence of shape (batch,
27,256). To get a single embedding per EEG trial, we use mean pooling. It just takes the
average across all 27 time steps. This gives us one 256-dimensional vector that

summarizes the entire sequence.
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Finally, we project this vector up to 512 dimensions to match the expected embedding
size for the rest of the pipeline. This projection includes layer normalization to keep the
output distribution stable. The final 512-dimensional embedding represents the EEG
signal with both local features (from the CNN) and global context (from the Transformer).

3.5 Training Pipeline

We train and implement the enhancded encoder architecture in three stage
approach. Figure 5 illustrates the complete training pipeline, showing how the stages
work together: from training the encoder to generating text from the eeg embeddings;
each stage has a specific learning objective, and training them sequentially prevents

interference between different goals.

< EEG Encoder Training <Multimodal LLM Fine-Tuning (Image-Caption)>

Proposed CNN-Transformer LLM Finetuned
_ | OANl—> -
Neural Network Encoder Captions

EEG Signals from Aligned Image SR
Bt foafiiros DeepSeek-7B-Chat
o
/\<\ cup
Image EEG Feature Embeddings Simplified Prompt Template

("<image> <label> Describe this
image in one sentence.")

EEG
Encoder

< EEG-Based Text Generation >

ing Text Output
(e.g., "A guitar.")

Trained EEG
Encoder

Fine Tuning with DeepSeek-7B-Chat Model

f

Simplified Prompt Template
("<image> <label> Describe this
image in one sentence.")

Figure 5: Complete overview of training pipeline for the proposed EEG-to-Text generation system.
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3.5.1 Training the Encoder

In the first stage, we train our proposed CNN-Transformer encoder from scratch
so that the encoder learns to produce 512-dimensional embeddings that both align with
CLIP’s visual representations and contain discriminative information for object
classification. The training uses EEG signals that have been filtered to the 5-95 Hz
frequency range, with data splits organized by unique images rather than by subject. This
ensures the model learns to generalize across different visual stimuli rather than
memorizing specific examples. We train with a batch size of 8 samples for 100 epochs,

using the learning rate of 5x107°.

The encoder learns from two loss functions simultaneously. The MSE loss measures the
squared Euclidean distance between EEG embeddings and CLIP image embeddings,
encouraging the encoder to map brain signals into the same semantic space that CLIP
uses for visual concepts. The classification loss uses cross entropy to train a linear
classifier that predicts which of the 40 object categories the person was viewing. We
combine these objectives with equal weight, so the total loss is simply the sum of MSE
and classification losses. During each training iteration, we extract EEG embeddings
using the encoder and obtain CLIP image embeddings from the corresponding visual
stimuli. CLIP remains frozen throughout this stage, serving only as a source of target
embeddings. We compute both the MSE loss between embeddings and the classification
loss from the encoder’s classifier head, then backpropagate the combined loss to update
only the encoder’s parameters. This includes all CNN layers, Transformer layers, and the
classification head. By the end of this stage, the encoder produces 512 dimensional EEG
embeddings capturing both CLIP aligned semantic structure and object discriminative

features. The following script was used for training:

python train_eeg_classifier.py \
--eeg _dataset data/block/eeg 55_95_std.pth \
--splits_path data/block/block_splits_by_image_all.pth \
--output ./hybrid_eeg_encoder \
--image_dir data/images/ \
--batch_size 8 \
--num_epochs 100 \

--learning_rate 5e-5
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3.5.2 LLM Fine-Tuning

After training the EEG encoder, we connect it to a large language model for
caption generation. The next two stages are executed in one script but represent two
separate fine-tuning phases: first with image embeddings, then with EEG embeddings.
Both stages follow the same training setup to ensure consistency. The following script(s)
(It was slightly modified based on whether we are using DeepSeek or Mistral) was
prepared to complete the finetuning phase:

python finetune_l1lm.py \
--eeg_dataset data/block/eeg 55 95 std.pth \
--splits_path data/block/block_splits_by image_all.pth \
--eeg_encoder_path ./hybrid_eeg_encoder \
--image_dir data/images/ \
--output deepseek_chat_hybrid_eeg_model \
--11m_backbone_name_or_path deepseek-ai/deepseek-11m-7b-chat \
--load_in_8bit \
--bf16 \
--batch_size 2 \
--gradient_accumulation_steps 32

We train with a batch size of 2 and accumulate gradients over 32 steps (effective batch

size 64). Each stage runs for 5 epochs using 1x107° learning rate.

Image based fine-tuning stage: This stage trains the projection layer to condition the
LLM on visual information using image-caption pairs. CLIP produces a 512-dimensional
image embedding, which is transformed by the projection layer before entering the frozen

LLM. Training examples following the Mistral instruction format:

“[INST] You are a helpful assistant. <image> <object _label> Describe this image in one

sentence: [/INST]” followed by the caption target.

The <image> token is replaced by the processed embedding, and <object label> is filled
with the category label (e.g., cat, airplane). Loss is computed only over the caption text.
This stage teaches the projection layer how to express visual concepts in the LLM’s
language space. That learned mapping becomes the foundation for EEG-based generation

in the next stage.
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EEG Based Fine-Tuning Stage: At this next stage, training continues automatically with
EEG embeddings. Before starting, we filter the training data by using the encoder to
classify all examples and keeping only those where the predicted label matches the ground
truth. This keeps about 60—70% of samples but ensures that the input embeddings truly
reflect the viewed object. The projection layer now learns to map EEG derived
embeddings into the same semantic space it learned for images. The category label

included in the prompt still provides useful guidance to the model.

By the end of this stage, the system can generate coherent descriptions directly from

recorded EEG responses to visual stimuli.

3.5.3 Implementation Details

We implement the training pipeline using the HuggingFace Transformers library.?
It provides standardized interfaces for model loading, tokenization, and training loops.
The Trainer API automatically handles gradient accumulation, mixed precision training,
and checkpoint saving, which simplifies our implementation and ensures best practices.
The small batch size of 2 combined with large gradient accumulation of 32 steps gives us
an effective batch size of 64. This approach lets us train with limited GPU memory while
still benefiting from the stability that larger batches provide. The 8-bit quantization
applied to the LLM is crucial for feasibility. All of the implementation was done on the
lightning.ai platform leveraging the computation capability of the NVIDIA L4 GPU.
With our configuration, Stage 1 takes approximately 7 hours to run for 100 epochs. The
finetuning stages take approximately 5 and 3 hours respectively. The actual training time

depends on the specific GPU model and parameter configuration.

3.6 Evaluation Setup

After training, we evaluate the complete pipeline on held out test data that wasn’t

seen during any training stage. The evaluation assesses how well the system can generate

3 The complete implementation steps, including training scripts and model configurations, is

available at: https://github.com/Sadi-Mahmud-Shurid/DecodingBrainwaves
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text descriptions from EEG signals and how effectively the encoder captures object

information from brain activity.

3.6.1 Inference Protocol

At test time, the system receives a raw EEG recording and generates a text
description without any access to ground-truth information. The inference process
follows a straightforward pipeline. First, we preprocess the EEG signal by extracting the
20 to 460 millisecond time window from stimulus onset and normalizing each of the 128
channels independently. This preprocessing matches exactly what was done during
training. Next, the preprocessed EEG passes through the frozen combined encoder to
obtain a 512-dimensional embedding. This embedding captures the neural representation
of what the person saw, encoded in a semantic space aligned with visual concepts through
the training process. The embedding then passes through the learned projection layer,
which transforms it from 512 dimensions to 4096 dimensions to match the LLM’s

expected input space.

We insert the projected embedding into the prompt template along with the object label,
following the same format used during training. The prompt structure is: “[INST] You
are a helpful assistant. <image> <object label> Describe this image in one sentence:
[/INST]” where <image> is replaced with the projected EEG embedding and
<object_label> contains the category name. The frozen LLM then generates a text

description with a maximum generation length of 64 tokens.

As a side output, the encoder also produces classification logits for all 40 object
categories. We take the argmax over these logits to obtain the predicted object category,
which allows us to compute classification accuracy as an additional measure of how well
the encoder captures stimulus information. In Figure 6, we can observe the inference: the
word after suffix is the the classified object, followed by an instruction. Then below the
warning we can we can notice our generated output based on what the person saw while
he was looking at the image; and also the expected output string. After completing all the
1987 iterations, the outputs gets saved in a csv file (including the classified object and
outputs generated against the expected output) which is later used for our metrics based
evaluations. The used metrics will be explained in the next section, and the results will

be discussed in the next chapter.
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Suffix ball Describe this image in one sentence:[/INST]

The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's ‘attention_mask' to obtain reliable results.
Setting 'pad_token_id" to "eos_token_id":2 for open-end generation.

Output generated: A white tennis ball with black stripes on a green grassy field.

Expected caption: <s> A white golf ball with a logo on it. </s>

15% [N | 296/1987 [14:82<1:20:17, 2.858/it]Prefix <s>[INST] You are a helpful assistant.

Suffix flower Describe this image in one sentence:[/INST]

The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's ‘attention_mask’ to obtain reliable results.
Setting 'pad_token_id" to "eos_token_id":2 for open-end generation.

Output generated: A pink and white flower with a yellow center.

Expected caption: <s> A white daisy with a yellow center in the foreground, surrounded by pink flowers in the background. </s>

15% N | 297/1987 [14:84<1:15:13, 2.67s/it]Prefix <s>[INST] You are a helpful assistant.

Suffix camera Describe this image in one sentence:[/INST]

The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's ‘attention_mask' to obtain reliable results.
Setting 'pad_token_id" to "eos_token_id":2 for open-end generation.

Output generated: A black and white photograph of a vintage camera with a leather case.

Expected caption: <s> A pool table with a wooden frame and a white playing surface. </s>

15% [N | 298/1987 [14:07<1:17:48, 2.76s/it]Prefix <s>[INST] You are a helpful assistant.

Suffix gloves Describe this image in one sentence:[/INST]

The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's ‘attention_mask’ to obtain reliable results.
Setting 'pad_token_id" to "eos_token_id":2 for open-end generation.

Output generated: Two pairs of white gloves on a table.

Expected caption: <s> A young child in pajamas with cupcake pattern, looking out a window. </s>

15% [N | 299/1987 [14:09<1:11:30, 2.54s/it]Prefix <s>[INST] You are a helpful assistant.

Suffix piano Describe this image in one sentence:[/INST]

The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's ‘attention_mask’ to obtain reliable results.
Setting 'pad_token_id* to eos_token_id':2 for open-end generation.

Output generated: A grand piano with a black and white keyboard.

Expected caption: <s> A showroom displaying a red grand piano and a black baby grand piano. </s>

15% [N | 300/1987 [14:12<1:08:58, 2.45s/it]Prefix <s>[INST] You are a helpful assistant.

Suffix piano Describe this image in one sentence:[/INST]
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's “attention_mask' to obtain reliable results.
Setting 'pad_token_id" to 'eos_token_id":2 for open-end generation.

Figure 6: Terminal screenshot showing inference outputs for samples from 296 to 300 out of 1987,
including classified object, expected output and generated output.

3.6.2 Evaluation Metrics

To quantitatively evaluate the output performance of our EEG-to-Text translation,
we have used several standard evaluation metrics. These include BLEU [16], METEOR
[20], ROUGE-L [21], and BERTScore [22]. Each of these measure a different aspect of
similarity between the generated text and the reference caption. We compare the results
of our proposed model within its frameowrk and also against the existing models. The
following subsections will clarify the chosen metrics, how these metrics work and the

context in detail.

BLEU: BLEU [16] (bilinguan evaluation understudy) is one of the common metrics used
to judge the quality of machine translation. However, it can be considered a bit outdated
now, or maybe useful depending on usecases. It works by counting lexical overlap,
meaning counting overlapping sequence of words (n grams) between the generated output
and the textual reference. For example, BLEU-1 counts matching single words (also

called unigrams), while BLEU-4 counts matching sequences of four words. BLEU
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heavily emphasises exact lexical overlap, therefore, a high BLEU score indicates the
model reproduced many of the same words or phrases like the reference. However, this
also means BLEU is relatively insensitive to paraphrasing. Because using different words
with the same meaning won’t score high unless there is exact word overlap. Notably,
BLEU’s stringency grows with the n-gram order. In fact, BLEU-4 can drop to zero if the
generated sentence and reference share fewer than four consecutive words. This is a
pertinent issue in our task. Suppose if a model’s output is very short or lacks longer
phrases in common with the reference, the BLEU-4 score will be closer and closer to
zero. In practice, because DeepSeek-7B-Chat [4] (one of the LL.Ms that we tested in our
model) often outputs very brief descriptions in our experiment (sometimes only a couple

of words), its BLEU-4 score is frequently minimal, underscoring this limitation of BLEU.

METEOR: METEOR (Metric for Evaluation of Translation with Explicit Ordering) [20]
was introduced to address some of the weknessses of BLEU. To be specific, this was to
be done by considering synonymy and morphological variations [20]. METEOR [20]
aligns the generated text with the reference in a more flexible manner. This allows
matches not only on exact words but also on stemmed forms and synonyms (for example,
“run” vs. “running”). It then computes a harmonic mean of precision and recall of
unigrams [20], with a higher weight for recall and a penalty for inadequate alignment.
This means METEOR rewards a system for finding many of the reference words (recall),
while also ensuring the generated words are mostly accurate (precision). Because of these
features, METEOR [20] tends to correlate better with human judgments in many cases
than raw BLEU [16]. Specially when the model uses different yet acceptable wording.
Nevertheless, METEOR still fundamentally relies on lexical overlap. It improves over
BLEU by catching some synonyms, but it will still penalize the omission of content words
present in the reference. If the output is much shorter than the reference (missing many

expected words), METEOR will drop significantly due to recall penalties.

ROUGE-L: ROUGE-L or Recall-Oriented Understudy for Gisting Evaluation [21] is a
recalling focused metric. It was originally developed for the evaluation of automatic
summarization [21]. ROUGE-L measures the length of the Longest Common
Subsequence (LCS) [21] and compares them between the generated text and the sentences
or captions. Rather than requiring contiguous words, it finds the longest word sequence
that occurs in both texts in the same order (not necessarily consecutively). This effectively

captures how much of the reference’s content is covered by the output in order, which is
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called focusing on recall of information [21]. A higher ROUGE-L score means that a
larger portion of the reference’s information (in terms of ordered words or phrases) is
present in the generated sentence. Like BLEU and METEOR, ROUGE-L is also grounded
in surface level overlap or lexical overlap of to some extent. It does not account for
synonyms or rephrasings beyond exact 25 word matches. A shorter output will naturally
have a shorter common subsequence (meaning shorter LCS) with the reference, and thus
a lower ROUGE-L. In my case, if the model only produces a few words, whereas the
reference is a longer sentence, the longest common subsequence might be just that one or
two word, which ultimately will lead to a relatively limited ROUGE-L score. In my
observation, among my two tested models (Mistral and DeepSeek), Mistral generates
more expressive and longer outputs compared to DeepSeek, therefore, Mistral naturally

has an edge over DeepSeek on this LCS based measure.

BERTScore: While BLEU [16], METEOR [20], and ROUGE-L [21] largely assess
lexical overlap (exact or slightly flexible word matching), BERTScore [22] provides a
complementary semantic evaluation. BERTScore [22] uses contextualised embeddings
from a pretrained language model (BERT or similar) to compare the generated text and
reference at the level of meaning [22]. In this approach each sentence is represented as a
set of vector embeddings for its words (or tokens) and the metric computes a soft
alignment between these sets to determine how much competent the model’s outputs are
in terms of meaning compared to the reference. Crucially BERTScore can detect semantic
equivalence even when different words are used. For instance, “a man riding a bicycle”
vs “a person on a bike” could score high on BERTScore despite having few exact words
in common. This makes BERTScore [22] more tolerant to paraphrasing and variation in
wording than the previous three metrics. It addresses cases where the model output
captures the correct idea but with different vocabulary or phrasing. A high BERTScore
indicates that the generated caption embeds to a similar vector space position as the

reference caption, signifying strong semantic similarity.

Overall, by combining these four metrics we evaluate both the surface level accuracy (did
the output use the same words as the reference?) and the semantic accuracy (did the

output convey the same meaning as the reference?).
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4 Results and Discussion

This chapter presents the quantitative and qualitative evaluation of our proposed
architecture for EEG-to-Text generation. We compare our approach against the
Thought2Text [12] framework across multiple evaluation metrics, demonstrating the
effectiveness of incorporating Transformer layers for capturing global temporal
dependencies in brain signals. We also evaluate the performance of multiple LLMs within

our proposed framework. All evaluation metrics are presented as percentages for clarity.

4.1 Quantitative Analysis

We evaluated text generation quality using four established metrics. Each metric
captures different aspects of similarity between generated and reference captions. We also
measured the encoder’s object classification accuracy as a direct assessment of its
representational capacity. We integrated and tested our proposed encoder with two
language models: Mistral-7B-Instruct [17] and DeepSeek-7B-Chat [4], evaluating
whether architectural improvements generalize across different model backbones. Figure

7 presents a comprehensive comparison across all metrics.

Quantitative Performance Comparison Across All Evaluation Metrics
100

B Proposed Architecture with Mistral-7B-Instruct Note: All metrics shown as percentages (%)
B Proposed Architecture with DeepSeek-7B-Chat
[ Baseline Architecture with Mistral-7B-Instruct

91.0
200 890

Score (%)

40 4

20 4

BLEU-4 BLEU-1 ROUGE-L METEOR BERTScore Classification
Accuracy

Evaluation Metrics

Figure 7: Quantitative performance comparison across all evaluation metrics (shown as percentages).
The proposed enhanced CNN-Transformer architecture paired with both Mistral-7B-Instruct and
DeepSeek-7B-Chat models is compared against the baseline [12] system. Note that the baseline scores are
paired with Mistral-7B-Instruct.
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Figure 7 shows that our architecture consistently outperforms the baseline across all
metrics. The proposed architecutre configured with Mistral achieves the best overall
performance with improvements in almost every metric, suggesting that Transformer
layers genuinely enhance the encoder’s ability to capture meaningful information from

EEG signals.

4.1.1 BLEU-1 and BLEU-4 Scores

BLEU [16] scores measure lexical overlap between generated and reference texts.
BLEU-1 counts matching individual words while BLEU-4 requires matching four word
sequences. Our proposed model integrated with Mistral-7B-Instruct [ 17] achieves BLEU-
1 0f 27.0%, compared to 26.0% for the baseline. A relative improvement of 3.8%. While
seemingly modest, this is meaningful given the inherent noise in EEG signals. Our mode
with DeepSeek scores 26.1%, still above baseline despite its tendency toward shorter
outputs. For BLEU-4, the proposed model integrated with Mistral scores 6.7% versus the
baseline’s 6.1%, representing a 9.8% relative improvement. Our architecture with
DeepSeek achieves 6.2%, slightly exceeding the baseline. The BLEU-4 improvement is
particularly significant. This metric easily drops to near zero for brief outputs or
mismatched word sequences, even with correct meaning. The fact that our architecture

improves BLEU-4, it suggests better phrase alignment.

4.1.2 ROUGE-L Scores

ROUGE-L [21] measures the longest common subsequence between texts,
focusing on recall without requiring consecutive words. This flexibility better captures
content coverage. The introduced with Mistral achieves 29.0% versus the baseline’s
28.0%, a 3.6% relative improvement indicating better content coverage. The model
includes more key information from reference captions, suggesting the enhanced encoder
captures more complete stimulus information. The designed architecure with DeepSeek
model scores 27.6%, slightly below baseline, explained by DeepSeek’s very brief outputs

that naturally limit subsequence length.

The ROUGE-L [21] improvement validates our architectural choice to add global context
modeling. Local CNN features may miss sustained neural responses spanning the entire
temporal window. Transformers ensure these extended patterns contribute to the final

embedding, producing more comprehensive descriptions.
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4.1.3 METEOR Scores

METEOR [20] considers synonyms and word stems while balancing precision
and recall, making it more sophisticated than BLEU. The presented architecure with
Mistral achieves 27.6% compared to approximately 26.2% for the baseline causing a
5.3% relative improvement. It is the largest gain among lexical overlap metrics. The

adopted model with DeepSeek scores 26.3%, somewhat matching baseline performance.

The METEOR [20] score improvement is particularly significant because it captures both
exact matches and semantic variations. Our model showing the best improvement on this
metric (among the lexical overlap based metrics) suggests the enhanced encoder helps
generate appropriate paraphrasing, not just memorized word patterns. This indicates that
global context from Transformer layers helps the system understand the semantic concept

behind visual stimuli.

4.1.4 BERTScore

BERTScore uses contextual embeddings from BERT to measure semantic
similarity rather than counting word overlaps [22]. This makes it valuable for assessing

whether descriptions convey the same meaning with different wording.

Our architecture shows strongest performance on BERTScore. Our designed model with
Mistral achieves 91.0%, while integrated with DeepSeek, it reaches 90.0%. The baseline
scores 89.0% on the same metric. These high scores indicate generally good semantic
understanding across all systems, but the improvements remain meaningful, that is 2.2%

and 1.1% relative improvement respectively.

These BERTScore [22] improvements provide compelling evidence that our architectural
modifications enhance semantic understanding for decoding brainwaves to text. The
metric’s tolerance to paraphrasing means it specifically measures conceptual accuracy,
not just word matching. Consistent improvement across both language models in our
expirement, suggests the enhanced encoder provides better semantic representations
regardless of decoder characteristics. Figure 8 provides a focused view of architectural

impact.
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Impact of Transformer Addition Object Classification Accuracy:
on Text Generation Quality Encoder Performance
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B Proposed CNN-Transformer Annotations show relative +2.2%
[ CNN-only (Baseline) improvement (%) & Relative improvement:
+9.6%
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Figure 8: Architectural impact of adding Transformer layers in the encoder. Left panel shows text
generation metrics with annotations indicating relative improvement percentages over baseline. Right
panel compares classification accuracy.

4.1.5 Object Classification Accuracy

Beyond text generation, we measured encoder classification accuracy as a direct
assessment of how well it extracts stimulus information from brain signals before
language model involvement. Both of our architectures achieve identical 58.1% (Figure
7) overall classification accuracy versus 53.0% overall for baseline [12] (Figure 7 and
Figure 8). It is a substantial 9.6% relative improvement. This is highly significant in EEG
classification where even small gains require considerable architectural advances. This
improvement directly validates our hypothesis that Transformer layers enhance
representational capacity. The ability to model global dependencies allows better
discrimination between object categories based on subtle brain activity patterns. Brain
responses vary in both local features (quick recognition) and global patterns (sustained
attention, semantic processing). The CNN-only baseline captures local features well but

may miss global patterns.

The identical performance of both our experimented model configurations (58.1%)
confirms that encoder quality is independent of the subsequent language model, which
makes architectural sense since classification occurs entirely within the encoder. The
9.6% relative improvement also explains text generation gains. Meaning better

classification means more discriminative embeddings that provide the language model
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with clearer input about visual concepts, thus it ultimately improves in terms of the

quatitative metrics as well.

4.2 Qualitative Analysis

Table 1: Representative samples comparing generated descriptions across models. The proposed
architecture captures more specific object attributes and demonstrates improved semantic understanding
regardless of chosen language model compared to the baseline. Reference captions are shown in black.

Images

Reference Captions

Baseline + Mistral

Proposed + Mistral

Proposed + DeepSeek

- A black and gold A black and white A black grand piano A grand piano with
s o grand piano with the piano with a with a black and a black and white
Boston Piano microphone in front white keyboard. finish.

Company logo. of'it.

A large yellow A group of A colorful, large A small brown
mushroom with a mushrooms growing mushroom with a mushroom growing
brown stem and a on a log. brown cap and white on alog.

brown cap, spots.
surrounded by green
foliage.
A pair of handmade, A pair of knitted A pair of black Black, knitted
knitted gloves witha  gloves with a white  leather gloves with a gloves with white

mix of brown, background. white stripe on the trim.

orange, and black back.
yarn.
A hand holding a A person holdinga A white coffee mug A white coffee mug

mug with a blue
background and a

handprint design.

coffee mug with the
words “World’s
Best Dad” written

on it.

with a white handle

and the words “I'm
not a morning

person” written on

it.

and the words
“World’s Best Dad”

written on it.

While quantitative metrics provide objective performance measures, examining actual

generated descriptions reveals how the models differ in practice. Table 1 presents

representative examples from the test set. It compares outputs from the baseline [12]

system and our proposed architectures.
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4.2.1 Descriptive Detail and Attribute Capture

Table 1 shows a clear pattern: the architecture introduced in this work gives more
detailed and accurate descriptions than the baseline. For example, in the “piano” image,
the baseline says, “A black and white piano with a microphone in front of it,” even though
no “microphone” is actually present. In contrast, out model integrated with Mistral-7B-
Instruct [17] more accuretly describes “A black grand piano with a black and white
keyboard,” avoiding false details. This suggests that the improved encoder extracts visual

features from brain signals more reliably.

’

The “mushroom” example shows the same trend. The baseline gives a very general
caption, “A group of mushrooms growing on a log.” While technically correct, it ignores
key visual features. The proposed Mistral version adds specific traits such as “colorful,”
“large,” and “white spots,” indicating that the encoder is capturing more fine grained
information from the EEG. This aligns with our 9.6% relative boost in classification

accuracy. Better object discrimination naturally leads to more detailed descriptions.

The introduced model integrated with DeepSeek-7B-Chat [4] behaves slightly differently.
Its outputs are much shorter, such as “4 small brown mushroom growing on a log.”
Although concise, it still includes the essential attributes. This shorter style explains why
DeepSeck performs worse on lexical overlap metrics like BLEU-4 [16] and ROUGE-L
[21], even though it uses the same improved encoder. This difference comes from the

language model’s generation style, not the encoder itself.

4.2.2 Semantic Accuracy and Contextual Understanding

The examples also show that our architecture improved in semantic
understanding, not just descriptive detail. In the “coffee mug” case, the reference caption
mentions a hand holding a mug with a handprint design. The baseline identifies the main
elements but mistakes the handprint for text. The adopted model’s Mistral output, “4
white coffee mug with a white handle and the words “I’'m not a morning person” written
on it.,” is still not a perfect match, but it shows the model is trying to interpret both visual

text and the overall scene.

The “glove” example shows a similar pattern. The reference describes handmade gloves

with mixed colors. The baseline reduces this to “knitted gloves with a white background,”
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ignoring the color details. The proposed framework with Mistral model instead gives

’

“black, leather gloves with a white stripe,” which gets the color pattern right and
identifies a specific feature, even though the material is incorrect. This suggests the
encoder is capturing meaningful structural information from the EEG signals, even if the

language model occasionally misinterprets it.

These observations match our 2.2% improvement in BERTScore [22]. Since, BERTScore
measures semantic similarity [22], the slightly higher score reflects that our model

captures the main meaning of objects, even when using different words.

4.2.3 Connecting Qualitative Observations to Proposed Methodology

The qualitative results directly reflect how our architecture processes EEG
signals. When someone looks at an image, the brain responds over time; early activity
represents simple visual features like shapes and colors, while later activity represents
object meaning. The baseline CNN encoder can capture these fast, local patterns. But its
limited receptive field makes it difficult to combine information across the full 440 ms
window [12, 18, 19]. The examples in Table 1 show this limitation. Generic outputs such
as “a group of mushrooms” or “knitted gloves with a white background” suggest that the
baseline mostly captured object category but missed richer details. Our introduced
enhanced encoder fixes this by adding Transformer layers that apply “self-attention”
across the entire sequence. This lets the model link early visual responses with later
semantic signals, resulting in embeddings that represent both the object type and its

specific attributes.

The “piano” example highlights this effect clearly. Identifying a “grand piano” instead
of just “a piano” requires combining information spread over time, which the
Transformer’s global attention [10] supports. This is why the proposed model produces

the more precise term while the baseline does not in this case.

Both our model versions (integrated Mistral [17] and DeepSeek [4]) show similar
improvements in detail and accuracy, even though DeepSeek-7B-Chat [4] tends to

generate shorter outputs. This supports the quantitative findings as well.

These qualitative observations also explain the metric gains. A 3.8% relative

improvement in BLEU-1 [16] may look small, but the examples show that it leads to
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clearer object attributes, fewer hallucinations, and more coherent descriptions. Likewise,
the 9.6% relative increase in classification accuracy appears in outputs that correctly
identify object types and their defining features. Even modest numerical gains can
produce meaningful improvements in how well the generated text reflects the information

encoded in brain signals.
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5 Conclusion and Future Work

5.1 Summary of Contributions

This thesis presents a comprehensive exploration of decoding brainwaves into
words by integrating large language models with neural networks. It introducdes a
framework that connects low level brain signals to latest language generation techniques.
The core of the work is a three stage translation task that begins with EEG encoding,
followed by cross modal semantic alignment, and ends with prompt based language

generation.

A key innovation of this work is the enhanced encoder architecture that combines the
local feature extraction of the ChannelNet CNN encoder [18] with the global modeling
ability of Transformers [10]. While the CNN captures short, rapid patterns, its limited
receptive field can miss information spread across the 440 ms window. Adding
Transformer layers after the CNN allows the model to learn global relationships through
“self-attention” [10]. It connects early visual signals with later semantic ones and creating

richer embeddings that better represent object categories and attributes.

This architectural change leads to clear performance gains. Classification accuracy rises
relatively by 9.6% (from 53.0% to 58.1%), showing that the encoder learns more
discriminative EEG features. These improvements carry over to text generation, with
consistent metric gains. The benefits apply to both language models that we tested,
Mistral-7B-Instruct [17] and DeepSeek-7B-Chat [4]. It goes to validate that the encoder

upgrade works well regardless of the language model used.

To evaluate the system, the thesis uses standard NLP metrics (BLEU, METEOR,
ROUGE-L, and BERTScore) [16, 20, 21, 22] along with qualitative analysis. The metrics
improve across the board indicating better semantic alignment. The qualitative results
further show that the designed model generates more detailed and accurate descriptions
with fewer hallucinated elements. Comparing Mistral-7B-Instruct [17] and DeepSeek-
7B-Chat [4] also highlights the difference between detailed vs. concise generation styles

while confirming that both benefit from the stronger encoder.
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5.2 Limitations and Future Directions

This thesis came across some limitations that also point to promising directions
for future work. One of the biggest challenges comes from the nature of non-invasive
EEG recordings. EEG has a low signal-to-noise ratio and only provides an indirect view
of brain activity. This makes it difficult to extract precise semantic information. In our
experiments, the system could reliably capture broad features, main objects or general
colors; but it often failed to pick up finer details. Improving this may require combining
EEG with other techniques like MEG or using higher density electrode setups that can

record richer neural signals.

Differences between participants also remain a major issue. EEG patterns vary widely
from person to person and can even shift across sessions for the same individual. As a
result, a model trained on one subject may not transfer well to another without extra
calibration. Future studies should look into more generalizable, subject independent
models that perform consistently across users. This will be especially important if such

systems are to be used outside research settings.

Data availability is perhaps the most impactful constraint. Very few public EEG-to-Text
datasets exist, and the dataset used in this thesis includes a limited number of images and
participants. Larger and more diverse datasets which are ideally covering multiple
languages and more subjects, would benefit both this work and the broader research
community. They would allow for training more robust models that can better capture the

complexity of translating brain signals into text.

Despite these challenges, this thesis shows that decoding brainwaves into words EEG is
possible. The architectural choices and evaluation methods developed here form a solid
base for future progress. By improving signal quality, model generalization, dataset scale,
and practical usability, decoding brainwaves and EEG-to-Text generation can move
closer to real world applications in communication support and brain-computer

interfaces.
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Annex

I. Declaration on the Use of Generative Artificial Intelligence

O T have not used any generative Al tools.

. I have used generative Al tools. | have verified the content generated by Al, ensured
the accuracy of the outputs, and properly indicated each instance of use in the table

below.

Usage type

Name of Generative Al

Tool(s)

Affected Sections
(chapter, page number,

reference)

Estimated Proportion of

Use (per usage type)

Literature Review

ChatGPT

Sections 2.1, 2.2,

pages 10-14

8-10%

Brief Summary

of the Prompt

Used the deep research feature to find out and study about the recent developments in

neural approaches for EEG-to-Text translation.

Program Code

Generation

Brief Summary

of the Prompt

Generating New Ideas or

Solution Proposals

Brief Summary

of the Prompt

Creating an Outline (text

structure, bullet points)

Brief Summary

of the Prompt

Creating Text Blocks

Brief Summary

of the Prompt

Generating Images for

[lustrative Purposes

Claude

Figure 4, page 21

12-15%

Brief Summary

of the Prompt

Took help to draft the Mermaid code for draw.io from my rough drawing.
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Figure 7, Figure 8; page
) Claude 12-15%
Generating Charts Based 32,35

Data Visualization,

on Data Points

Generate Python matplotlib code for creating grouped bar charts comparing multiple
Brief Summary

of the Prompt models across evaluation metrics with proper labeling and annotations.

Preparing a Presentation

Brief Summary

of the Prompt

Various sections for

Other (please specify)
grammar refinement and
Google Gemini, ChatGPT 5-7%

clarity improvement

Grammar refinement and

clarity improvement of

own expressions throughout Chapters 3-4.

Refine technical explanation for clarity while maintaining academic tone for the

Brief Summary following section; check grammar and improve sentence structure for better
of the Prompt )

understaning.
Aggregated Percentage Value (for the core part of the task) 9-12%

Brief Textual Justification of the Aggregated Value:

I have used generative Al tools to help with small, technical tasks, not to create any of the main research content.
For the literature review, Al helped me pull together and organize ideas from existing papers, but I personally
checked everything against the original sources. When creating data visualizations (Figure 7 and 8), [ used Al to
draft some basic Python templates for the comparison charts. However, I had to adapt, populate using my own
results and refine the style as per my requirements and liking. For the diagram in Figure 4, I first drew a draft of it,
then I used generative Al to prepare a mermaid outline based on the draft, after that I had to heavily edit it so it
would correctly reflect the architecture I developed. I also used Al for minor grammar and sentence structure
cleanup. All of the technical experiments, implementing the methods, analyzing the results, and drawing conclusions
are my own. I reviewed and fact checked every Al generated piece to make sure it was accurate and aligned with

what [ was trying to achieve.
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