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Abstract 
 

Accurate pitch estimation is crucial in a variety of audio and speech processing applications, such as 

music analysis, voice conversion, and expressive speech synthesis. This thesis presents two key 

contributions aimed at improving pitch estimation performance through self-supervised learning and 

model fusion strategies. 

The first contribution enhances the PESTO (Pitch Estimation via Self-supervised Training Objectives) 

framework by incorporating a Squeeze-and-Excitation (SE) attention mechanism to improve the 

extraction of pitch-relevant features. Additionally, the original hard argmax output is replaced with a 

differentiable softargmax function, enabling smoother and more accurate pitch contour predictions. 

These modifications significantly improve estimation accuracy and robustness while maintaining low 

computational complexity. 

The second contribution introduces a hybrid model named ESCAPE (Emotion Self-Supervised Context 

Aware Pitch Estimation), which combines the outputs of the improved PESTO and FCPE (Fast and 

Compact Pitch Estimation) models through a late fusion strategy. By averaging their predictions, 

ESCAPE leverages the complementary strengths of both architectures and achieves better 

generalization across various speech conditions, including male, female, and emotionally expressive 

speech. 

Experiments conducted on benchmark datasets such as MIR-1K, MDB-stem-synth, and JL-Corpus 

demonstrate that both the enhanced PESTO and the ESCAPE model outperform their respective 

baselines in terms of Root Mean Square Error (RMSE), Mel Cepstral Distortion (MCD), and Gross 

Pitch Error (GPE). This work lays a foundation for more robust and adaptive pitch estimation systems, 

with applications in speech synthesis, music technology, and affective computing. 
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Kivonat 

 

A pontos hangmagasság-becslés kulcsfontosságú számos hang- és beszédfeldolgozási alkalmazásban, 

például a zeneelemzésben, a hangátalakításban és az expresszív beszédszintézisben. Ez a szakdolgozat 

két fő hozzájárulást mutat be, amelyek célja az önfelügyelt tanulás és a modellegyesítés révén történő 

hangmagasság-becslés teljesítményének javítása. 

Az első hozzájárulás a PESTO (Pitch Estimation via Self-supervised Training Objectives) 

keretrendszert fejleszti tovább egy Squeeze-and-Excitation (SE) figyelmi mechanizmus beépítésével, 

amely javítja a hangmagasság szempontjából releváns jellemzők kinyerését. Emellett a hagyományos 

kemény argmax kimenetet egy differenciálható softargmax függvénnyel helyettesítjük, amely simább 

és pontosabb hangmagasság-görbéket eredményez. Ezek a módosítások jelentős javulást hoznak a 

pontosság és a robusztusság terén, miközben megőrzik a modell alacsony számítási igényét. 

A második hozzájárulás egy hibrid modellt vezet be ESCAPE (Emotion Self-Supervised Context 

Aware Pitch Estimation) néven, amely az továbbfejlesztett PESTO és a FCPE (Fast and Compact Pitch 

Estimation) modellek kimeneteit kombinálja egy késői egyesítési stratégiával. Az előrejelzések 

átlagolásával az ESCAPE modell kihasználja mindkét architektúra előnyeit, és jobb 

általánosítóképességet ér el különféle beszédkörnyezetekben, beleértve a férfi, női és érzelmileg 

kifejező beszédeket is. 

A MIR-1K, MDB-stem-synth és JL-Corpus benchmark adathalmazokon végzett kísérletek azt 

mutatják, hogy a továbbfejlesztett PESTO és az ESCAPE modell is túlteljesíti az eredeti modelleket a 

gyökérközepes négyzetes hiba (RMSE), a Mel-cepstrális torzítás (MCD) és a durva hangmagasság-

hiba (GPE) mutatói szerint. Ez a munka szilárd alapot nyújt robusztusabb és adaptívabb hangmagasság-

becslő rendszerek fejlesztéséhez, amelyek alkalmazhatók a beszédszintézis, a zenei technológia és az 

affektív számítástechnika területén. 
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CHAPTER 1 

Introduction  

 
Pitch estimation lies at the core of numerous audios processing applications, including speech analysis, 

music transcription, and voice conversion. The accurate tracking of the fundamental frequency (F₀) is 

essential for capturing prosodic features in speech, recognizing melodic contours in music, and driving 

expressive synthesis in voice-based systems. However, pitch estimation remains a challenging task—

particularly under real-world conditions—due to background noise, overlapping harmonics, speaker 

variability, and emotional or expressive vocal characteristics [1, 2, 3]. 

Over the years, a variety of pitch estimation methods have been proposed, ranging from classical signal 

processing algorithms to recent deep learning-based models. Among these, the PESTO (Pitch 

Estimation via Self-supervised Training Objectives) framework stands out for its efficient and 

lightweight design, leveraging self-supervised learning to estimate pitch from time-frequency 

representations without requiring large-scale manual annotations. Despite its effectiveness, the baseline 

PESTO model can still struggle in conditions where pitch contours are non-linear or where the spectral 

content is highly dynamic [4, 5]. 

To address these limitations, this thesis introduces two key contributions. First, we propose an 

enhanced version of the PESTO model, incorporating a Squeeze-and-Excitation (SE) block to improve 

the model’s ability to focus on pitch-relevant frequency bands [6], along with the replacement of hard 

argmax operations with a softargmax function for smoother pitch contour generation. These 

modifications enhance both the resolution and robustness of pitch estimation, while preserving the 

original model’s computational efficiency. 

Second, we introduce ESCAPE—a hybrid model that fuses the predictions of the enhanced PESTO 

and the FCPE (Fast and Compact Pitch Estimation) model. FCPE, a mel-spectrogram-based conformer 

architecture, is known for its compactness and strong performance in varied vocal scenarios. By 

averaging the output distributions of both models, ESCAPE leverages the complementary strengths of 

PESTO and FCPE, resulting in more stable and accurate pitch predictions across both male and female 

voices [5, 7, 8]. 

Throughout this work, we evaluated the proposed systems using standard objective metrics including 

Root Mean Square Error (RMSE), Mel Cepstral Distortion (MCD), and Gross Pitch Error (GPE). 

Experimental results on datasets such as MIR-1K and JL-Corpus demonstrate that the proposed 

enhancements lead to substantial improvements in pitch accuracy and stability over the original models 

[9, 10]. 
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In summary, this thesis contributes novel architectural enhancements and model fusion strategies that 

advance the state of pitch estimation, providing a foundation for robust performance in noisy, varied, 

and real-world audio contexts. 

 

1. Fundamental frequency (F0): 

Pitch is a perceptual attribute of sound that emerges from how humans interpret the periodic 

characteristics of audio signals. Unlike objective acoustic features such as frequency, pitch is inherently 

subjective and context-dependent, shaped by the human auditory system and psychological 

interpretation. Historically, musical pitch scales were developed based on perceptual similarities 

between notes, long before the underlying physics of frequency and spectral content were understood. 

While pitch generally increases with the logarithm of frequency—doubling approximately every 

octave—this relationship is not strictly linear across the frequency spectrum. For instance, frequency 

doubling below 1000 Hz results in a pitch interval slightly less than an octave, whereas above 5000 

Hz, it corresponds to more than an octave. Intensity further modulates this perception: sinusoids above 

3000 Hz tend to sound higher in pitch with increasing loudness, while those below 2000 Hz may appear 

to drop in pitch [11, 12]. 

The complexity deepens when we move from isolated tones to real-world sounds, which often contain 

multiple harmonics. The presence and organization of these partials significantly influence pitch 

perception. A tone with harmonically related overtones enhances the salience and clarity of the 

perceived pitch, whereas a more sine-like waveform may have a clearer fundamental frequency but a 

weaker pitch sensation. Factors such as duration, intensity, and spectral richness all play roles in 

shaping how pitch is perceived. Additionally, there is ongoing debate in auditory science about the 

mechanisms of pitch perception, with some research focusing on pure tones and others on complex 

soundscapes [13]. From a neurophysiological perspective, pitch perception is closely linked to the 

brain’s response to periodic acoustic patterns, with the fundamental frequency (F0)—the inverse of the 

signal’s period—serving as the primary acoustic correlate. Although F0 provides a measurable, 

objective basis for pitch, the subjective experience of pitch itself is shaped by a wide range of acoustic 

and cognitive factors [2]. 
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Figure 1. Relationship between musical pitch and frequency. 

This figure illustrates the nonlinear relationship between perceived pitch and acoustic frequency. Each 

labeled point on the curve corresponds to a musical note (e.g., A₀ to A₆), with their respective 

frequencies in hertz (Hz) marked on the x-axis [4]. As shown, pitch perception follows a logarithmic 

trend—each octave corresponds to a doubling in frequency (e.g., A₃ at 220 Hz, A₄ at 440 Hz, A₅ at 880 

Hz, and so on). The vertical spacing between notes in pitch (on the y-axis) remains constant, while the 

corresponding frequency spacing increases exponentially [2, 5]. This visualization highlights the 

perceptual scaling of pitch and supports the idea that equal steps in pitch (such as octaves) are not 

equally spaced in terms of absolute frequency. 

 

2. Pitch estimation: 

Pitch estimation, often operationalized through the detection of the fundamental frequency (F0), is a 

core task in both music and speech signal processing, with diverse applications across multiple 

domains. In Music Information Retrieval (MIR), F0 estimation serves as critical side information for 

tasks like informed source separation and audio analysis/re-synthesis. In music production, it underpins 

widely used software such as Auto-Tune and Melo dyne, enabling pitch correction and creative 

manipulation of vocal and instrumental recordings [14]. Beyond production, pitch estimation facilitates 
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music transcription—allowing performances without written scores to be analyzed or practiced—and 

supports musicological studies by enabling large-scale analysis of different musical styles. It is also 

central to applications such as query-by-humming, genre classification, and version or cover song 

detection [15, 16]. 

Despite its apparent maturity in controlled environments, pitch estimation remains a difficult problem, 

especially in realistic and complex audio settings. Estimating F0 in monophonic, studio-quality 

recordings is largely considered a solved problem; however, this confidence diminishes in live 

performance settings, where noise, reverberation, and polyphonic textures introduce significant 

challenges. Real-time scenarios exacerbate these difficulties: during live concerts or interactive music 

systems, pitch-tracking errors cannot be corrected post hoc. Therefore, real-time pitch detection 

demands not only high accuracy but also low latency, computational efficiency, and robustness to 

unpredictable acoustic conditions [15, 17]. 

The difficulties in pitch estimation arise from several signal-level factors, including interference from 

percussive elements, overlapping harmonics in polyphonic textures, and inconsistencies in harmonic 

structure due to timbral complexity or post-processing effects. These challenges are particularly evident 

in genres like pop music, where dense production and mastering techniques can obscure the harmonic 

content necessary for reliable pitch estimation [14]. 

Recent advances in data-driven techniques, particularly deep learning, have begun to address these 

obstacles by learning complex mappings from audio signals to pitch labels. However, such models 

require large quantities of time-aligned, annotated audio data—resources that are scarce due to the 

labor-intensive nature of manual pitch labeling. Consequently, most models are trained and evaluated 

on small, domain-specific, and often homogeneous datasets, limiting their generalizability [5, 16]. 

In interactive music environments, additional constraints must be considered. Real-time pitch trackers 

must maintain a delicate balance between computational complexity and responsiveness. They must 

deliver sufficient frequency resolution (ideally at least to the level of musical semitones), recognize 

pitch with minimal delay, and function reliably in the presence of environmental noise. Furthermore, 

the accuracy of real-time pitch estimation is shaped not only by algorithmic design but also by 

perceptual and physiological constraints: the human ear requires multiple cycles to perceive pitch 

accurately, introducing an inherent trade-off between early detection and estimation reliability [1, 4]. 
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No single algorithm can meet all the demands of real-time, interactive music performance under all 

conditions. Therefore, a comprehensive understanding of multiple techniques, their parameterizations, 

and their trade-offs is essential for any system designer or computer musician. While classical 

approaches like autocorrelation and cepstral analysis remain foundational, modern pitch tracking 

increasingly relies on hybrid systems that combine signal processing heuristics with machine learning, 

optimized for both speed and robustness [4, 5]. 

3. Deep learning pitch estimation: 

In this section, we delve into the architecture and functioning of the PESTO model (Pitch Estimation 

via Self-supervised Training Objectives), a self-supervised deep learning framework for pitch 

estimation [5]. As the foundational component of this thesis, PESTO serves as the basis for the first 

contribution and plays a critical role in the second, where it is fused with another model to enhance 

overall performance. A thorough understanding of PESTO is essential to appreciate the motivations 

behind its enhancement and the methodological innovations proposed in this work. Therefore, we will 

examine its architecture, training objectives, and inference process in detail, highlighting its strengths 

and limitations as a state-of-the-art pitch estimation model. 

3.1. Self-supervised learning method (PESTO): 

PESTO (Pitch Estimation with Self-supervised Transposition-equivariant Objective) is a lightweight 

Siamese network with fewer than 30,000 parameters, designed to predict the fundamental frequency 

(F₀) from audio without requiring any labeled data. The model processes two Constant-Q Transform 

(CQT) frames that differ by a known pitch shift using a shared encoder 𝑓0. PESTO is trained with three 

key objectives: to remain equivariant to pitch transposition—ensuring that if the input is transposed by 

k semitones, the output distribution shifts accordingly; to remain invariant to pitch-preserving 

perturbations such as additive noise and gain; and to prevent representation collapse through a class-

based objective that explicitly encodes the expected shift in probability mass. Once training is 

complete, a single forward pass of 𝑓0 on an unseen CQT frame produces a probability distribution over 

quantized pitch values, from which a continuous F₀ estimate is subsequently recovered [5]. 
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3.1.1. Input Representation: 

Audio Sampling: 

The input of the PESTO model consists of audio signals that are first sampled at a frequency of 16,000 

Hz (16 kHz). This sampling rate is chosen because it provides a reasonable trade-off between capturing 

pitch-relevant frequency information (up to 8 kHz, per the Nyquist theorem) and keeping 

computational costs manageable. In the context of human voice and musical instruments, 16 kHz is 

sufficient to capture the fundamental frequency, and several harmonics of most pitches encountered in 

the range of 27.5 Hz (A0) to 4 kHz [5], [2]. 

 

CQT Transform (Constant-Q Transform) : 

The sampled waveform is transformed into the frequency domain using the Constant-Q Transform 

(CQT). Unlike the Short-Time Fourier Transform (STFT), which divides the frequency axis linearly, 

the CQT uses logarithmically spaced frequency bins. This log-scaling mimics the human perception of 

pitch and is particularly well-suited for musical signals [4]. The CQT used in PESTO spans 7 octaves 

and is configured with b=3 bins per semitone, resulting in a total of K=99×b=297 bins. This level of 

resolution allows precise modeling of pitch variations down to approximately 33 cents (1/3 of a 

semitone). The CQT also ensures that pitch shifts in the input result in simple translations in the 

transformed space—this property is central to PESTO’s design [5, 18]. 

Let 𝑥ϵℝ𝑘represent one such magnitude-only CQT frame. 

3.1.2. Generating Self-Supervision Pairs: 

Pitch Shift Augmentation: 

In order to learn from unlabeled data, PESTO generates training pairs by artificially shifting the pitch 

of input CQT frames. A pitch shift of k semitones is simulated by translating the CQT frame vertically 

by k×b bins, where b=3 is the number of bins per semitone. This is made possible by the log-frequency 

structure of the CQT. For a shift kϵ [−𝑘𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥] where 𝑘𝑚𝑎𝑥=16, the two cropped frames are: 

𝑥 = 𝐶𝑄𝑇[𝑘𝑚𝑎𝑥 ∶ 𝐾 − 𝑘𝑚𝑎𝑥]     (1.1) 

𝑥(𝑘) = 𝐶𝑄𝑇[𝑘𝑚𝑎𝑥 − 𝑘 ∶ 𝐾 − 𝑘𝑚𝑎𝑥 − 𝑘]     (1.2) 
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This guarantees perfect alignment and known relative pitch between 𝑥 and 𝑥(𝑘)[5]. 

Pitch-Preserving Augmentations: 

To enhance robustness, additional pitch-preserving transformations are applied to each of the two 

frames. These transformations include additive white noise, which simulates background interference, 

and random gain changes, which emulate variations in loudness. These augmentations help the model 

generalize better to real-world acoustic conditions without altering the pitch content of the input. 

The augmentations are applied independently: 𝑥~=𝑡1(𝑥), 𝑥~(𝑘)=𝑡2(𝑥(𝑘)) where 𝑡1, 𝑡2ϵ Τ the set of 

allowable transformations. All operations are designed to be computationally efficient and GPU-

friendly [5]. 

Preprocessing Layer: 

Layer Normalization: The input CQT frames are first passed through a layer normalization operation. 

This normalizes the input distribution to zero mean and unit variance, which helps stabilize training 

and improves convergence. 

Convolutional Stack: 

The model uses a series of 1-D convolutional layers along the frequency axis to extract pitch-relevant 

features. It begins with two initial 1-D convolutional layers with a kernel size of 3, Leaky-ReLU 

activations with a slope of 0.3, and a dropout rate of 0.2. A skip connection is incorporated to enhance 

gradient flow during training. Following these, four additional 1-D convolutional layers are applied, 

with channel widths progressively decreasing from 40 to 10 in the sequence 40 → 40 → 30 → 30 → 

10. These subsequent layers are designed to extract increasingly abstract representations of the 

harmonic structure and pitch-related information. 

Toeplitz Fully-Connected Layer: 

After the convolutional stack, the resulting feature maps are passed through a Toeplitz-constrained 

fully connected layer. A Toeplitz matrix A𝜖ℝ𝑑× 10K has the property: 

𝐴𝑖,𝑗 = 𝑎𝑖−𝑗     (1.3)            

for all i, j 
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This structure is equivalent to a convolution with a fixed kernel and ensures translation equivariance—

shifting the input CQT frame by k bins results in an equal shift in the output. This is key to preserving 

the relationship between input transposition and predicted pitch [5], [1]. 

Output Layer : 

The output of the Toeplitz layer is passed through a softmax activation, yielding a distribution over 

d=[12×b×7] =252 pitch classes. 

Each output dimension corresponds to a discrete pitch bin (e.g., 20 cent resolution across 7 octaves). 

The probability mass is expected to shift according to the pitch shift applied in training. 

 Objective Function and Training Loss: 

To ensure pitch-equivariance, the model is trained using a distribution alignment loss based on the 

cross-entropy between the output distributions of the two augmented inputs. Let : 

• 𝑦 = 𝑓
θ 

(𝑥)be the predicted pitch distribution for input 𝑥  

• 𝑦(𝑘) = 𝑓
θ 

(𝑥(𝑘))be the predicted distribution for the pitch-shifted input 𝑥(𝑘)  

• 𝑆ℎ𝑖𝑓𝑡𝑘(𝑦) be the distribution circularly shifted by k bins. 

Then the loss is defined as:  

ℒ(𝑥, 𝑥(𝑘)) = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦(𝑘), 𝑆ℎ𝑖𝑓𝑡𝑘(𝑦))     (1.4)              

This encourages the model to output pitch distributions that are consistent with the known pitch shift, 

training it to be equivariant to transposition [5], [3]. 

 

Figure 2. Overview of the PESTO method. The input CQT frame (log-frequencies) is first cropped to produce 

a pair of pitch-shifted inputs (𝑥, 𝑥(𝑘)). Then we compute 𝑥̃ and 𝑥̃(𝑘) by randomly applying pitch-preserving 
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transforms to the pair. We finally pass 𝑥, 𝑥̃ and  𝑥(𝑘) through the network 𝑓𝜃  and optimize the loss between 

the predicted probability distributions. 

 

3.1.3. Absolute Pitch Recovery: 

Although PESTO is trained on relative pitch shifts, it can be used to estimate absolute pitch after 

training. For an unseen CQT frame, the softmax output yields a probability distribution 𝑝𝑖 over pitch 

bins with associated center frequencies 𝑓𝑖. The final F0 estimate is computed as the expected value: 

𝑓 =  ∑ 𝑝𝑖
𝑑
𝑖=1 . 𝑓𝑖     (1.5) 

This weighted sum across the pitch bins yields a smooth and continuous estimate of the fundamental 

frequency [5]. 

 

Figure 3. Architecture of the PESTO network 𝑓𝜃. The number of channels varies between the intermediate 

layers, however the frequency resolution remains unchanged until the final Toeplitz fully-connected layer. 

 

3.2. Training Setup and Hyperparameters : 

The training setup for the enhanced PESTO model was designed to ensure stable learning. The model 

was optimized using the Adam optimizer with a learning rate of 1×10−3, which balances convergence 

speed and stability. A batch size of 128 CQT frames was used to ensure sufficient statistical 

representation during each training iteration. The input to the network consisted of 7-octave Constant-

Q Transform (CQT) crops with 252 bins, corresponding to a resolution of 3 bins per semitone. The 

training process spanned 200 epochs to allow the model ample opportunity to learn the complex 
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patterns in the data. To mitigate overfitting and encourage generalization, a dropout rate of 0.2 was 

applied within the convolutional layers. This combination of hyperparameters and architectural choices 

contributed to the model's robustness and accuracy in pitch estimation tasks. 

Data is sampled randomly from a large unlabelled dataset (e.g., MIR-1K, MDB-stem-synth) and 

augmented with pitch-preserving transformations. All augmentations are applied online during training 

[10], [20], [21]. 

 

3.3. Model Complexity and Efficiency 

PESTO’s total number of parameters is less than 30,000, making it highly efficient for both training 

and inference. Because of its low complexity [5]: 

• It can be trained on a single GPU or CPU in less than 1 hour on small datasets. 

• It is suitable for deployment on mobile and embedded systems, unlike larger models such as 

CREPE. 

The use of Toeplitz constraints in the fully connected layer reduces parameter count and enforces 

equivariance by design, leading to better generalization with fewer resources [13]. 

 

4. Problem definition 

Automatic pitch estimation—the process of determining the fundamental frequency (F₀) of audio 

signals—is a critical task in both speech and music signal processing. Accurate pitch tracking is 

essential in numerous applications, including melody extraction, speech analysis, emotion recognition, 

and music transcription [1, 2]. Recent advancements in deep learning have led to powerful pitch 

estimators such as CREPE, FCPE, and PESTO. Among these, PESTO (Pitch Estimation with Self-

supervised Transposition-equivariant Objective) is particularly notable for its efficiency and ability to 

learn from unlabelled data by leveraging transposition-equivariant learning principles[5], [8], [16]. 

Despite PESTO’s strong performance on clean, monophonic signals, its performance can degrade in 

challenging real-world conditions, particularly when processing emotional or expressive speech, which 

often features non-linear prosody, increased variability in pitch contours, and voice qualities that differ 

significantly from neutral utterances. Additionally, while PESTO is computationally efficient and 
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lightweight, it may underutilize opportunities for enhancing feature extraction or improving robustness 

through model fusion [3], [5]. 

This thesis addresses two key limitations in the original PESTO model: 

1. Limited Feature Refinement Capability: The baseline PESTO architecture lacks internal 

mechanisms to emphasize or suppress features based on their importance. This may limit the 

model’s ability to focus on pitch-relevant cues in spectro-temporal representations, especially 

under noisy or emotionally varied conditions. 

2. Lack of Integration with Complementary Models: Although PESTO performs well 

independently, it does not leverage the strengths of other pitch estimation algorithms like FCPE 

(Fast and Compact Pitch Estimation), which is known to handle emotional and expressive 

speech more effectively. This separation limits the opportunity to create a more robust hybrid 

system [8]. 

5. Research Objective 

The goal of this thesis is to enhance the PESTO algorithm to improve pitch estimation performance, 

particularly in expressive and emotional speech contexts, by addressing the above challenges through 

two novel contributions: 

• Contribution 1 – Integration of the Squeeze-and-Excitation (SE) Block: The SE block is a 

lightweight architectural module that adaptively recalibrates channel-wise feature responses. 

By incorporating SE blocks into the PESTO architecture, we enable dynamic feature weighting, 

allowing the model to better capture harmonic patterns and suppress irrelevant components. 

This addition results in improved accuracy and robustness, as demonstrated in our evaluation 

[7]. 

• Contribution 2 – Hybrid Model via Weight Averaging with FCPE: We propose a fusion 

technique where the final predictions are derived by averaging the softmax output weights of 

both PESTO and FCPE models. This ensemble approach benefits from PESTO’s general pitch 

tracking accuracy and FCPE’s adaptability to emotional speech characteristics. The combined 

system shows superior performance in emotional datasets compared to either model alone [8]. 

By addressing these issues, this research contributes to the development of more robust, adaptive, and 

accurate pitch estimation systems, with particular applicability in expressive speech processing, 

musical signal analysis, and affective computing. 
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CHAPTER 2 

Methodology  

 

This chapter presents the core technical contributions proposed and implemented in the scope of this 

thesis. Two interconnected enhancements to pitch estimation systems are introduced. The first 

contribution involves architectural improvements to the original PESTO model, aimed at increasing its 

accuracy and robustness in complex audio environments. Building upon this foundation, the second 

contribution proposes a hybrid fusion approach—referred to as ESCAPE—which combines the output 

of the enhanced PESTO with that of the FCPE model to further improve pitch prediction performance 

on emotional expressive speech. These two contributions are intrinsically linked, as the output of the 

improved PESTO model directly serves as one of the inputs in the ESCAPE fusion strategy [5], [8]. 

Together, they form a cohesive methodology aimed at advancing state-of-the-art pitch estimation. 

 

1. First Contribution Overview and Motivation 

The original PESTO model is a lightweight and efficient pitch estimation framework that leverages 

self-supervised learning to deliver reliable results. Despite its effectiveness, there is still potential for 

enhancing its ability to extract pitch-relevant information, especially in acoustically challenging or 

noisy environments. To address this, we introduce two key architectural modifications aimed at 

improving both the precision and stability of the model’s predictions [5]. 

First, we incorporate a Squeeze-and-Excitation (SE) block within the convolutional feature extraction 

layers. This attention mechanism enables the model to adaptively emphasize important channel-wise 

features while suppressing less relevant or noisy components. The SE block operates through a 

lightweight recalibration process that maintains the original model’s low complexity and 
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computational efficiency, while improving its capacity to focus on the most informative spectral 

regions for pitch estimation [7]. 

Second, we enhance the final prediction mechanism by replacing the original hard argmax function 

with a softargmax operation. While the hard argmax selects the most activated pitch bin, it is non-

differentiable and may introduce instability near bin boundaries. In contrast, the softargmax provides 

a continuous, differentiable approximation of the argmax, allowing the model to generate smoother 

and more precise pitch predictions. This modification improves resolution and robustness, particularly 

in cases where the pitch lies near the boundary between two bins or when spectral representations are 

affected by minor distortions. 

Together, these enhancements strengthen the model’s performance under various acoustic conditions, 

providing improved pitch estimation accuracy and consistency without sacrificing its core advantages 

of speed and simplicity. 

1.1. The Squeeze-and-Excitation (SE) Block 

In our enhanced PESTO architecture, we inserted a Squeeze-and-Excitation (SE) block immediately 

after the initial convolutional layer. The implementation begins with a 1D convolution applied to the 

input, using a kernel size of 15. This operation maps from the input channel—typically one or more, 

depending on the number of harmonics in the Harmonic Constant-Q Transform (HCQT)—to 20 hidden 

channels. The convolutional output is then passed through a LeakyReLU activation function, followed 

by a dropout layer to prevent overfitting. Subsequently, the output is fed into the SE block, which 

dynamically recalibrates the importance of each channel. By modeling interdependencies between 

feature maps, the SE block enables the network to emphasize informative channels and suppress less 

relevant or noisy components, thereby improving the model’s ability to extract pitch-relevant features. 

Traditional convolutional layers treat all feature channels equally. However, not all channels (feature 

maps) are equally important for a given task. The SE block was introduced to model interdependencies 

between feature channels, so the network can emphasize informative channels and suppress irrelevant 

ones [7]. 
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This dynamic re-weighting mechanism acts as a channel-wise attention module, learning to calibrate 

the feature maps adaptively based on the input. 

 

Structure of the SE Block 

Given an input feature map 𝑋𝜖ℝ𝐶×𝐻×𝑊 from a convolutional layer, the SE block processes it through 

three main stages: 

Where: 

• C = number of channels (feature maps), 

• H = height of each feature map (e.g., time dimension), 

• W = width of each feature map (e.g., frequency or spatial dimension), 

• Xc(i,j) = the activation at position (i,j) in the c-th channel. 

 

Squeeze: Global Information Embedding 

The first step condenses the spatial information of each channel into a single statistic using global 

average pooling: 

𝑧𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑋𝑐(𝑖, 𝑗)𝑊

𝑗=1
𝐻
𝑖=1      (2.1) 

         

• 𝑧𝑐: A scalar representing the global average activation of channel c. 

• 𝑧 = [𝑧1,   𝑧2,   𝑧3, … . . 𝑧𝐶]𝜖ℝ𝐶: A channel descriptor vector. 
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for each channel c∈{1,2,...,C}. This produces a channel descriptor z∈ℝ𝐶 summarizing the global 

spatial context of each channel [7]. 

Excitation: Adaptive Recalibration 

This stage learns a non-linear function to model channel-wise dependencies and generate attention 

weights s∈ℝ𝐶: 

𝑠 = 𝜎(𝑊2. 𝛿(𝑊1. 𝑧))     (2.2)                       

Where: 

• 𝑊1∈ℝ 
𝐶

𝑟
×𝐶

 and 𝑊2𝜖ℝ 𝐶×
𝐶

𝑟  are the weights of two fully connected (FC) layers, 

• r is the reduction ratio (typically 16) to reduce parameter count and improve generalization, 

• 𝛿 is the ReLU activation, 

• 𝜎 is the sigmoid activation, ensuring that 𝑠𝑐∈ (0,1). 

These learned activations s determine how much emphasis to place on each channel. 

Scale: Feature Recalibration 

The final step reweights each channel in the original feature map X by multiplying with the 

corresponding excitation: 

𝑋̂𝑐 = 𝑠𝑐 . 𝑋𝑐     (2.3)                   

for each channel c, resulting in a recalibrated output 𝑋̃𝜖 ℝ𝐶×𝐻×𝑊. 
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Figure 4. Structure of the Squeeze-and-Excitation (SE) Block 

After the SE block, the model continues with optional prefiltering layers and additional convolutional 

blocks, followed by a Toeplitz-constrained fully connected layer and softmax output. 

This placement allows the SE block to act early in the network, enabling it to reweight spectral features 

that contribute most to accurate pitch detection [5]. 
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Implementation Details 

• The SE block was defined as a PyTorch nn.Module with global average pooling followed by a 

two-layer FC network and sigmoid gating. 

• It was inserted after the first conv1 block, and before any optional prefiltering layers. 

• The reduction ratio used in the excitation stage was set to 16, meaning the channel 

dimensionality was first reduced from 20 to 1.25 (rounded to 1) and then expanded back [5], 

[7]. 

1.2. Softargmax for Pitch Estimation 

To enhance pitch precision, we substituted the original hard argmax prediction method with a 

differentiable softargmax approach. The softargmax function computes a weighted average over all 

pitch bins, where the weights are derived from a temperature-scaled softmax of the activations [22]: 

 

𝑝̂ = ∑ 𝑤𝑖 
𝑁
𝑖=1 𝑝𝑖     (2.4), with 

𝑤𝑖 =
exp (𝛽𝑎𝑖)

∑ exp (𝛽𝑎𝑖)𝑗
     (2.5) 

Here : 

• 𝑎𝑖  is the activation for the i-th pitch bin, 

• 𝛽 is a sharpness factor (temperature), 

• 𝑝𝑖 is the pitch value (e.g., in MIDI fractions) for bin i, and 

• 𝑤𝑖 is the normalized soft attention weight. 

This allows the output to represent pitch more continuously, reducing quantization error and providing 

more stable predictions around ambiguous frequencies [23]. 
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Figure 5. Enhanced PESTO Architecture with Squeeze-and-Excitation (SE) Block and Softargmax Output 

 

1.3. Training parameters and dataset 

we designed and trained the enhanced version with the following key components: 
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• Optimizer: Adam with learning rate 1×10−4 

• Scheduler: Cosine Annealing for smooth decay over 50 epochs 

• Device: Training is performed on a GPU (accelerator: gpu) 

 

The MDB-stem-synth dataset was used for the training  

The MDB-stem-synth dataset is a large-scale, multi-instrument, polyphonic audio dataset designed 

specifically for research in music source separation, pitch estimation, and machine learning-based 

music analysis. It is a synthetic extension of the MedleyDB dataset, which contains multitrack audio 

recordings from real music performances [10]. 

 

MDB-stem-synth was created by synthesizing individual stems (isolated instrument tracks) from the 

original multitrack audio in MedleyDB using high-quality software instruments and the FluidSynth 

synthesizer. This synthesis provides clean, aligned ground truth pitch annotations, which are difficult 

to extract from real audio recordings due to noise and overlapping harmonics. 

 

The MDB-stem-synth dataset contains 230 multitrack audio recordings in WAV format, each 

comprising multiple instrument stems and a corresponding full mix. The total number of WAV files 

exceeds several thousand due to the per-instrument renderings. These high-quality synthesized 

recordings are accompanied by ground truth MIDI and pitch annotations, enabling precise and reliable 

training of pitch estimation models like PESTO [10]. 

1.4. Model Efficiency and Computational Design 

The proposed methodology prioritizes both performance and efficiency through lightweight neural 

architectures and strategic model enhancements. The first contribution—the enhanced PESTO 

model—preserves the original network’s low parameter count by incorporating a Squeeze-and-

Excitation (SE) attention block and replacing the hard argmax with a softargmax operation. These 

additions introduce minimal overhead while significantly improving the model’s ability to focus on 

pitch-relevant features and generate smoother pitch contours [7]. 

The second contribution, ESCAPE, combines the strengths of two pre-trained models (enhanced 

PESTO and FCPE) by averaging their pitch distributions at inference time. This ensemble approach 

requires no additional training parameters and operates through a simple forward pass of both models 
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followed by vector averaging. As such, ESCAPE inherits the compactness of its constituents while 

offering improved prediction robustness [8]. 

Despite the additional attention module and the dual-inference pipeline in ESCAPE, the overall 

computational footprint remains modest, making the proposed solutions viable for real-time 

applications and resource-constrained environments such as embedded systems or mobile devices. This 

design balance between model complexity and accuracy ensures the methods are both practical and 

scalable [9]. 

 

 

2. Second Contribution Overview and Motivation 

While the enhanced PESTO model significantly improves general pitch estimation performance, it still 

faces limitations when applied to expressive or emotionally rich speech. Such speech often includes 

sudden pitch variations, dynamic intensity shifts, and nonlinear prosodic changes that challenge 

traditional pitch tracking models. In contrast, the FCPE (Fast Context-based Pitch Estimation) model, 

which employs a conformer-based architecture with strong temporal modeling capabilities, has 

demonstrated greater effectiveness in handling these expressive speech characteristics [3][8]. 

To leverage the strengths of both models, we propose a hybrid pitch estimation strategy called ESCAPE 

(Emotion Self-Supervised Context Aware Pitch Estimation). Rather than relying solely on a single 

model’s prediction, this contribution combines the pitch outputs from both the enhanced PESTO and 

FCPE models. This is achieved by performing a simple averaging of their predicted pitch values, 

creating a fused output that balances the detailed frequency modeling of PESTO with the contextual 

robustness of FCPE [5], [8]. 

The combination process is carried out at the prediction level, where the pitch values from both models 

are merged to form a unified estimate. This ensemble approach enhances the reliability of the 

prediction, especially in challenging acoustic conditions or emotionally expressive segments. 

By combining these two complementary models, ESCAPE aims to deliver more accurate, stable, and 

expressive pitch estimations, making it a powerful solution for applications requiring nuanced vocal 

analysis. 
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2.1. FCPE model architecture 

Since the Fast Context-based Pitch Estimation (FCPE) model does not yet have a formally published 

academic paper, this architectural analysis has been performed entirely based on its open-source 

implementation [8]. The model integrates multiple advanced deep learning components, including a 

1D ConvNeXt backbone, Conformer layers, and an end-to-end decoding strategy to predict pitch values 

from raw audio. The implementation is modular and optimized for inference efficiency and emotional 

speech handling. 

2.1.1. Preprocessing Mel Spectrogram Extraction 

The input to FCPE is a Mel-spectrogram, a time-frequency representation of audio designed to match 

the human auditory scale [8].  

The raw waveform w is converted to a mel-spectrogram X via a short-time Fourier transform (STFT) 

and mel-filtering. This is implemented in the Wav2Mel module: 

𝑋 = 𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜𝑔𝑟𝑎𝑚(𝑤) ∈  ℝ𝐵×𝑇×𝐷     (2.6) 

The network maps an input mel-spectrogram X∈ℝ𝐵×𝑇×𝐷 to a pitch distribution over frequency bins 

Y∈ℝ𝐵×𝑇×𝐾, where: 

• B is the batch size, 

• T is the number of time frames, 

• D is the number of mel bins, 

• K is the number of pitch bins. 

2.1.2. Input Stack – Initial Convolution Layers 

The mel-spectrogram is projected into a higher-dimensional space via: 

𝐻0 = 𝐶𝑜𝑛𝑣1𝐷(𝑋)  ∈  ℝ𝐵×𝑇×𝐻     (2.7) 

followed by a GroupNorm and LeakyReLU activation. This prepares the input for the Conformer 

layers 
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2.1.3. Encoder: Conformer Naïve Encoder 

The core encoder is composed of stacked Conformer blocks, each of which combines: 

• Multi-Head Self-Attention (MHSA) 

• Convolutional Module 

• Feedforward Module 

The conformer layers learn contextual dependencies across time, enabling both local and global 

modeling of pitch-relevant structures [8]. The overall operation of a single Conformer layer can be 

abstracted as: 

𝐻𝑙+1 = 𝐻𝑙 + 𝐶𝑜𝑛𝑣(𝑀𝐻𝑆𝐴(𝐹𝐹𝑁(𝐻𝑙)))     (2.8)                      

where each component includes residual connections and optional dropout. Let L be the number of 

Conformer layers, then: 

𝐻𝐿 = 𝐶𝑜𝑛𝑓𝑜𝑟𝑚𝑒𝑟(𝐻0)     (2.9)                                                  

2.1.4. Output Projection and Activation 

The encoder output is normalized and projected to the number of pitch bins: 

𝑧 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻𝐿),          𝑌 = 𝜎(𝑊. 𝑍 + 𝑏)     (2.10) 

where: 

• W∈ℝ𝐾×𝐻, 

• b∈ℝ𝐾, 

• σ(⋅) is the sigmoid activation, 

• Y∈ ℝ𝐵×𝑇×𝐾 is the final pitch activation. 

This output is a soft distribution over pitch bins. 

2.1.5. Decoding Latent to Cent Frequency 

The output activations Y are converted to cent values (log-frequency scale) using either soft 

averaging or local argmax: 

• The cent table maps each bin index k to its corresponding cent value 𝑐𝑘 based on: 
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𝑐𝑘 = 1200. 𝑙𝑜𝑔2  (
𝑓𝑘

10
)     (2.11) 

For soft averaging (decoder='argmax'): 

𝑐𝑒𝑛𝑡𝑡 =
∑ 𝑌𝑡,𝑘

𝐾
𝑘=1 .𝑐𝑘

∑ 𝑌𝑡,𝑘
𝐾
𝑘=1

     (2.12) 

For local weighted argmax (decoder='local_argmax'): 

𝑐𝑒𝑛𝑡𝑡 =
∑ 𝑌𝑡,𝑘𝑘∈𝒩(𝑘∗) .𝑐𝑘

∑ 𝑌𝑡,𝑘𝑘∈𝒩(𝑘∗)
,        𝑘∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑌𝑡,𝑘     (2.13)    

Then, convert cent to frequency: 

𝑓0 = 10. 2
𝑐𝑒𝑛𝑡

1200     (2.14)                                                           

2.1.6. Harmonic Embedding 

During training, FCPE can incorporate harmonic information using an embedding vector 𝑒ℎ  

depending on pitch doubling or halving: 

𝐻0 ←  𝐻0 +  𝑒ℎ     (2.15)                                                    

Different embeddings can be used to supervise 𝑓0/2, 𝑓0, and 2𝑓0 jointly to increase harmonic 

robustness. 

2.1.7. Loss Function 

The training loss is based on binary cross-entropy between predicted activations and a Gaussian-

blurred target latent vector: 

ℒ = − ∑ ∑ [𝑦𝑡,𝑘 log(𝑦̂𝑡,𝑘) + (1 − 𝑦𝑡,𝑘)log (1 − 𝑦̂𝑡,𝑘)]𝐾
𝑘=1

𝑇
𝑡=1      (2.16)          

where the target 𝑦𝑡,𝑘 is obtained by blurring the ground truth pitch 𝑓0 over the cent table [22]. 

2.1.8. Test-Time Augmentation (TTA) 

In inference, FCPE supports pitch shifting with multiple key shifts (e.g., -12, 0, +12 semitones). Each 

version produces a pitch track 𝑓0
(𝑘)

.A dynamic programming-based ensemble algorithm then selects 

the optimal path across time minimizing: 

• Pitch continuity (L2 distance) 

• Voiced/unvoiced transition penalties 
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This is implemented in the ensemble_f0() function and improves robustness against unvoiced noise 

and octave errors. 

 

Figure 6. FCPE Architecture Overview 
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2.2. Weights averaging of the models 

To enhance the accuracy and robustness of pitch estimation, I developed a hybrid method that combines 

the outputs of two distinct models: FCPE (Fast Context-based Pitch Estimation) and my enhanced 

version of the PESTO model. FCPE uses a conformer-based architecture that leverages both 

convolution and self-attention to effectively capture short- and long-range dependencies in the mel-

spectrogram of speech, producing reliable pitch estimates even in noisy or expressive conditions [5], 

[8]. In contrast, PESTO, a residual network trained on harmonic representations, was further fine-tuned 

by me to improve its performance on emotional speech. To take advantage of the complementary 

strengths of both models, I computed a frame-wise average of their pitch predictions. This fused output, 

referred to as ESCAPE (Emotion Self-Supervised Context Aware Pitch Estimation), is defined as the 

average of the FCPE and PESTO predictions at each time frame. The result is a smoother and more 

accurate pitch contour that outperforms either model individually, particularly in challenging speech 

conditions. This ensemble approach improves consistency by suppressing errors unique to each model 

while reinforcing shared pitch cues [24]. 

2.2.1. Method of averaging  

The ESCAPE ensemble operates by averaging the frame-level fundamental frequency (f₀) predictions 

from both models. Where concatenation was utilized which is a method used to combine multiple arrays, data frames, 

or sequences into a single entity along a specified dimension or axis. It ensures that the data is merged in the same order 

as the input. 

Given two matrices A and B of shape (m x n), their concatenation along axis 1 can be represented 

as: 
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𝐶 = [𝐴|𝐵] = [
𝑎11 𝑎12

𝑎21 𝑎22
    

𝑎13 𝑏11 𝑏12

𝑎23 𝑏21 𝑏22
     

𝑏13

𝑏23
]     (2.17) 

where: 

𝐴 = [
0 1
5 7

    
3
9

]  and  𝐵 = [
0 2
6 8

    
4

10
]     (2.18) 

Resulting in: 

𝐶 = [
0 1
5 7

    
3 0 2
9 6 8

     
4

10
]     (2.19) 

 

 

The resulting matrix C has dimensions (m × 2n), where m is the number of rows (2 in this case), 

n is the number of columns in each input matrix (3 in this case), and 2n is the total number of 

columns in the output (6 in this case). The concatenation process preserves the order of the 

input arrays or sequences, ensuring that their internal arrangement remains unchanged. In 

multidimensional structures such as NumPy arrays or pandas DataFrames, concatenation 

occurs along a specified axis—typically, axis=0 for row-wise (vertical) stacking and axis=1 

for column-wise (horizontal) merging. Importantly, the dimensions of the input arrays along 

the non-concatenated axes must match to ensure uniformity in the resulting structure.
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Figure 7. Visual Representation of Array Concatenation 

 

This approach assumes equal confidence in each model’s predictions and performs element-

wise averaging to smooth out discrepancies and reinforce consistent estimates across time. 
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Figure 8. Diagram representing ESCAPE 

 

3. Evaluation Methodology and Metrics  

To assess the performance of the proposed pitch estimation models—namely the enhanced 

PESTO and the ESCAPE hybrid model—this thesis adopts a comprehensive evaluation 

methodology combining both visual analysis and quantitative metrics. A critical aspect of this 

evaluation involves testing the models on diverse speech data, including both male and female 

voices, to examine their robustness across different pitch ranges and vocal characteristics. 

As a first step, the predicted pitch trajectories will be plotted over time for both models across 

various expressive speech samples. This visualization is essential as it allows for intuitive 

inspection of pitch contour shape, continuity, and alignment with voiced/unvoiced transitions. 

It also enables visual comparisons between models, revealing differences in performance—
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such as smoothing behavior, sharp transitions, and pitch tracking stability—that may not be 

fully captured by numerical metrics [9], [25], [26]. 

For a rigorous quantitative evaluation, the predicted pitches will be compared to ground-truth 

values using the following standard metrics: 

3.1. Root Mean Square Error (RMSE) 

RMSE quantifies the average deviation between predicted and reference pitch values in Hertz 

(Hz): 

𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑓0

(𝑖)
− 𝑓0̂

(𝑖)
)2𝑁

𝑖=1      (2.20) 

                            

Where: 

• 𝑓0
(𝑖)

:ground-truth pitch at frame i, 

• 𝑓0̂
(𝑖)

: predicted pitch at frame i, 

• N: total number of evaluated frames. 

 

 

 

3.2. Gross Pitch Error (GPE) 

GPE indicates the percentage of voiced frames in which the relative pitch error exceeds a 

predefined threshold (typically 20%): 

𝐺𝑃𝐸 =
1

𝑁𝑣𝑜𝑖𝑐𝑒𝑑
∑ 𝛿(

|𝑓0
(𝑖)−𝑓0̂

(𝑖)
|

𝑓0
(𝑖) > 𝜏)

𝑁𝑣𝑜𝑖𝑐𝑒𝑑
𝑖=1     (2.21) 

Where: 

• δ(⋅): indicator function, 

• τ: error threshold (e.g., 0.2), 

• 𝑁𝑣𝑜𝑖𝑐𝑒𝑑: number of voiced frames. 

3.3. Mel Cepstral Distortion (MCD) 

MCD measures the spectral distance between the predicted and reference signals in terms of 

their mel-cepstral coefficients, which reflect timbral and pitch envelope characteristics: 
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𝑀𝐶𝐷 =
10

ln (10)
√2.

1

𝑇
∑ √∑ (𝑐𝑑

(𝑡) − 𝑐̂𝑑
(𝑡)

)2𝐷
𝑑=1

𝑇
𝑡=1      (2.22) 

               

Where: 

• 𝑐𝑑
(𝑡) and 𝑐̂𝑑

(𝑡)
: 𝑑𝑡ℎ mel-cepstral coefficients at frame t, 

• D: number of coefficients, 

• T: total number of frames. 

3.4. Comparison Strategy 

The evaluation will compare the enhanced PESTO and ESCAPE models to their respective 

baselines (original PESTO and FCPE) using the above metrics. The models will be evaluated 

separately on male and female voices to assess their generalization capabilities across different 

fundamental frequency ranges. Visual plots and metric tables will be presented in the Results 

and Evaluation chapter to support a thorough comparative analysis and demonstrate model 

improvements. 
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CHAPTER 3 

Results and Evaluations 

  

This chapter presents a detailed evaluation of the contributions introduced in this thesis—

namely, the enhanced PESTO model and the ESCAPE hybrid pitch estimator. The analysis 

focuses on assessing the effectiveness of the proposed methods in improving pitch estimation 

accuracy across a range of acoustic scenarios. Both objective metrics and visualization 

techniques are employed to examine model performance. Quantitative evaluation is conducted 

using standard pitch estimation metrics including Root Mean Square Error (RMSE), Mel 

Cepstral Distortion (MCD), and Gross Pitch Error (GPE), offering a clear comparison with 

baseline models such as the original PESTO and FCPE. The evaluations include both male and 

female voice samples and cover different expressive conditions to demonstrate the robustness 

and generalization of the proposed systems. Visual pitch trajectories over time are also 

presented to provide intuitive insights into the estimation behavior of each model [9], [24], [25], 

[26]. 

 

1. Dataset Used for Evaluation 

In this study, two different speech datasets were used to evaluate the performance of pitch 

estimation models under varying conditions. Each dataset served a distinct purpose and was 

selected to match the evaluation goals of the respective models. 

The MIR-1K dataset was employed to evaluate the enhanced version of the PESTO model, 

which included architectural improvements such as the addition of a Squeeze-and-Excitation 

(SE) block. MIR-1K is a widely used benchmark dataset developed by the Music Information 

Retrieval Lab at Academia Sinica. It contains 1,000 song clips derived from 110 Chinese 

karaoke tracks. These audio clips are monophonic singing recordings, each provided with a 

corresponding pitch label file (.pv) that contains ground truth fundamental frequency (F0) 
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values on a frame-by-frame basis [20]. The pitch labels are sampled at a consistent hop size, 

and unvoiced frames are annotated with a value of 0 Hz. The dataset is sampled at 16 kHz, and 

each audio clip typically lasts between 4 to 13 seconds. The availability of pitch annotations 

enabled the calculation of objective metrics such as Root Mean Square Error (RMSE), Mel 

Cepstral Distortion (MCD), and Gross Pitch Error (GPE), allowing for quantitative comparison 

between different versions of the PESTO model [9], [10], [25], [26]. 

On the other hand, the JL-Corpus (JLCorpus) dataset was used to evaluate the performance of 

the ESCAPE system, which combines the outputs of PESTO and FCPE models through pitch 

prediction averaging. The JL-Corpus is designed for emotional speech research and contains 

high-quality recordings of utterances spoken with various emotional expressions, such as anger, 

happiness, sadness, and neutrality. These expressive speech samples reflect the variability in 

pitch and prosody that characterizes natural emotional speech, making the dataset suitable for 

testing the robustness of pitch estimation models in more dynamic, real-world scenarios. The 

JL-Corpus comprises recordings from multiple speakers across different genders. Although this 

dataset does not provide frame-level pitch annotations (i.e., no .pv ground truth files), it was 

still valuable for evaluating model behavior. Specifically, audio files such as 

female1_angry_1a_1.wav were used to analyze pitch contours predicted by the models. In the 

absence of ground truth, the evaluation was qualitative and comparative, and focused on 

examining the benefits of combining model predictions in the ESCAPE framework [5], [8], 

[27]. 

Overall, the MIR-1K and JL-Corpus datasets provided complementary evaluation conditions. 

While MIR-1K enabled precise, metric-driven validation of the enhanced PESTO model using 

ground truth pitch labels, JL-Corpus allowed for the exploration of pitch tracking robustness in 

expressive, emotionally varied speech using model fusion techniques. This dual evaluation 

approach supports both accuracy-focused and realism-focused assessment of pitch estimation 

performance. 

 

2. Evaluation of the First contribution 

2.1 Male Voice 

Table 1: presents the evaluation results on the MIR-1K dataset for male voices, comparing the 

original PESTO algorithm with the proposed enhanced model. The evaluation metrics include 
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Root Mean Square Error (RMSE), Mel Cepstral Distortion (MCD), and Gross Pitch Error 

(GPE), which are standard indicators of pitch estimation accuracy and robustness. Lower values 

in each metric indicate better performance. 

Table 1: Enhanced PESTO Evaluation Results (MIR-1K) for a male voice 
 

 RMSE(Hz) ↓ MCD (dB) ↓ GPE (%) ↓ 

PESTO 173.722 10.66 9.1  

Proposed 58.047 3.56 6.3  

 

The proposed enhanced PESTO model achieves a significant reduction in all three metrics 

compared to the original PESTO baseline. Specifically, RMSE is reduced by approximately 

66.6%, indicating a considerable improvement in pitch accuracy. Likewise, the MCD value 

drops from 10.66 dB to 3.56 dB, suggesting enhanced spectral alignment between the predicted 

and reference signals. Additionally, GPE is lowered from 9.1% to 6.3%, reflecting better pitch 

tracking stability. These results demonstrate that the enhanced model substantially outperforms 

the baseline in estimating pitch for male vocals on MIR-1K, affirming the effectiveness of the 

proposed modifications. 

Visualization of Pitch Over Time – Male Voice 

To further assess the performance of our enhanced pitch estimation model, we visualize and 

compare the pitch contours produced by the original PESTO and the enhanced PESTO 

(proposed model) for a male voice input. These time-domain visualizations provide valuable 

insights beyond numerical metrics, helping to interpret how accurately each model captures the 

natural variations in pitch over time. 

The figure titled "PESTO for a male voice" reveals a relatively smoother contour but with 

underestimations and abrupt transitions at some frames, especially around frames 110 to 140, 

where the pitch estimation drops below expected values. The dynamic range of pitch appears 

compressed, potentially failing to capture the full variability of the male speaker’s voice. 

In contrast, the figure titled "enhanced PESTO for a male voice" shows a more expressive 

and detailed pitch trajectory. Although there are minor fluctuations, the enhanced model 

captures more of the high-frequency components and reflects pitch transitions with improved 

continuity and sensitivity. This leads to better alignment with the expected pitch behavior in 

natural male vocalizations. 
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These plots support the quantitative improvements in RMSE, MCD, and GPE discussed earlier, 

and visually demonstrate how the proposed enhancements help in producing more realistic and 

consistent pitch contours. 

 

 

 

Figure 9. Pitch Contour Estimated by Original and enhanced PESTO for a Male Voice 
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2.2. Female Voice 

Table 2: presents the evaluation results on the MIR-1K dataset for female voices, comparing 

the original PESTO model to the proposed enhanced version. Lower values across all metrics 

denote superior performance. 

Table 2: Enhanced PESTO Evaluation Results (MIR-1K) for a female voice 

 

 RMSE(Hz) ↓ MCD (dB) ↓ GPE (%) ↓ 

PESTO 216.25 13.28 9.9  

Proposed 194.670 11.95 9.1  

 

Female voices tend to exhibit higher pitch ranges, faster pitch modulation, and sharper spectral 

transitions, making pitch tracking inherently more challenging compared to male voices. These 

complexities often lead to larger errors in both frequency and spectral shape estimation. 

Despite these challenges, the proposed model demonstrates clear improvements across all 

evaluation dimensions. The RMSE drops from 216.25 Hz to 194.67 Hz, showing a noticeable 

gain in frequency prediction precision. Similarly, MCD is reduced from 13.28 dB to 11.95 dB, 

reflecting a more accurate spectral match between the predicted and ground-truth signals. The 

GPE, which quantifies the percentage of gross errors, also improves from 9.9% to 9.1%, 

indicating increased temporal pitch stability and robustness. 

These improvements validate the effectiveness of the enhanced model, especially in handling 

the nuanced and dynamic nature of female speech, and further demonstrate its generalizability 

across different voice types. 

Pitch Trajectory Visualization for Female Voice 

To further investigate the pitch estimation quality, we visualize the pitch contours produced by 

both the original PESTO model and the enhanced PESTO model for a female voice sample. 

These plots represent the estimated fundamental frequency (F₀) over time, offering an intuitive 

view of each model's tracking performance [1], [4]. 

As shown in the figures, the enhanced PESTO model demonstrates a much smoother and more 

stable pitch trajectory across the duration of the audio signal. In contrast, the original PESTO 

model shows considerable fluctuations, sharp spikes, and irregular jumps, particularly around 
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pitch transitions. These erratic changes can be attributed to its use of hard argmax and limited 

attention to harmonic structures, which becomes especially problematic in higher-pitched, 

harmonically rich female voices. 

Female voices generally exhibit more rapid vibrato, wider pitch ranges, and sharper timbral 

transitions compared to male voices. These characteristics often challenge pitch estimators, 

leading to instability and higher error rates. Despite these challenges, the enhanced PESTO 

model maintains a more consistent estimation with fewer artifacts, validating the effectiveness 

of the SE attention mechanism and the smooth softargmax decoding strategy introduced in our 

improvements. 

This visual analysis complements our quantitative metrics (RMSE, MCD, GPE), reinforcing 

that the proposed enhancements contribute to better pitch continuity and overall estimation 

fidelity in challenging signal conditions. 
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 Figure 10. Pitch Contour Estimated by Original and enhanced PESTO for a Female Voice 

3. Evaluation of the Second contribution 

2.2. Sad Male Voice 

The evaluation results presented in Table 2 highlight the performance comparison between 

PESTO, FCPE, and the proposed ESCAPE model on a sample from the JL-Corpus featuring a 

sad male voice. 
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Table 3: ESCAPE Evaluation Results (JL-Corpus) for a sad male voice 

 

 RMSE(Hz) ↓ MCD (dB) ↓ GPE (%) ↓ 

PESTO 161.10 11.41 8.75  

FCPE 152.81 9.32 9.24  

ESCAPE 45.41 4.11 5.62  

 

The ESCAPE model demonstrates a clear advantage across all evaluation metrics. It achieves 

a substantial reduction in RMSE, dropping to 45.41 Hz, compared to 161.10 Hz for PESTO 

and 152.81 Hz for FCPE. This translates to over a 71.8% improvement over PESTO and a 

70.3% improvement over FCPE, indicating significantly more precise pitch tracking. 

Similarly, in terms of spectral distortion, ESCAPE records an MCD of 4.11 dB, which is 

markedly lower than 11.41 dB and 9.32 dB reported for PESTO and FCPE respectively. This 

demonstrates a more faithful reconstruction of the spectral envelope, which is essential in 

maintaining the naturalness of voiced content. 

Lastly, for GPE, which measures the percentage of grossly incorrect pitch estimates, ESCAPE 

again outperforms both baselines with 5.62%, compared to 8.75% for PESTO and 9.24% for 

FCPE. This implies that ESCAPE maintains a more consistent and stable pitch prediction even 

in expressive or emotionally nuanced speech contexts. 

These results collectively confirm that the ESCAPE model successfully leverages the strengths 

of both FCPE and the enhanced PESTO, yielding a highly accurate and robust pitch estimation 

method tailored for real-world, variable conditions such as emotional or prosodically complex 

speech. 

3.2. Angry Female Voice  

The evaluation outcomes presented in Table 4 reflect the pitch estimation performance of the 

baseline models—PESTO and FCPE—compared to the proposed ESCAPE framework on an 

angry female voice sample from the JL-Corpus.  

Table 4: ESCAPE Evaluation Results (JL-Corpus) for an angry female voice 
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 RMSE(Hz) ↓ MCD (dB) ↓ GPE (%) ↓ 

PESTO 299.08 13.5 11.02  

FCPE 190.77 10.6 9  

ESCAPE 60.33 5.15 7.2  

 

The proposed ESCAPE model significantly outperforms both PESTO and FCPE across all three 

metrics. Specifically, ESCAPE achieves an RMSE of 60.33 Hz, a dramatic improvement from 

299.08 Hz (PESTO) and 190.77 Hz (FCPE). This corresponds to a 79.8% reduction compared 

to PESTO and a 68.4% reduction relative to FCPE, signifying much more precise pitch 

estimation. 

In terms of spectral quality, ESCAPE reduces the Mel Cepstral Distortion (MCD) to 5.15 dB, 

compared to 13.5 dB for PESTO and 10.6 dB for FCPE. Such a sharp reduction indicates 

ESCAPE’s superior ability to capture and preserve the harmonic structure of the audio signal, 

which is especially challenging in high-pitched, emotionally intense female voices. 

Furthermore, the Gross Pitch Error (GPE) metric, which quantifies the rate of large pitch 

estimation errors, shows a clear gain for ESCAPE with 7.2%, compared to 11.02% and 9% 

for PESTO and FCPE respectively. This reduction highlights the model’s increased robustness 

and consistency under dynamic pitch variations typically found in female speakers, particularly 

in emotionally charged expressions like anger. 

These improvements collectively confirm that ESCAPE excels in handling the acoustic 

variability present in female voices, while also maintaining strong generalization and 

robustness. The fusion of FCPE and enhanced PESTO results in a balanced and highly accurate 

pitch estimation system even in acoustically challenging scenarios. 
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CHAPTER 4 

Conclusion and Future Work 

  

1. Conclusion 

In this thesis, we presented a comprehensive investigation into improving pitch estimation for 

monophonic vocal signals through two novel contributions: an enhanced version of the PESTO 

algorithm and a fusion-based ensemble model named ESCAPE, which integrates the outputs of 

the improved PESTO and FCPE algorithms. 

The first contribution involved augmenting the original PESTO framework by integrating a 

Squeeze-and-Excitation (SE) attention mechanism into its convolutional architecture. This 

enhancement allowed the model to more effectively emphasize pitch-relevant harmonic 

information while suppressing irrelevant or noisy components, ultimately improving robustness 

in diverse acoustic environments. Additionally, we replaced the hard argmax operation 

previously used for pitch bin selection with a softargmax function, which provided smoother, 

differentiable, and more accurate pitch predictions across time [5], [7], [22], [23]. 

The second contribution, ESCAPE, was proposed to leverage the complementary strengths of 

two well-performing models: the enhanced PESTO and FCPE. Rather than relying solely on 

one estimator, ESCAPE performs ensemble-based inference by combining the pitch predictions 

from both models. This integration was achieved through output averaging, resulting in 

improved pitch accuracy and stability. The fusion strategy proved especially effective in 

handling variations in pitch dynamics and acoustic characteristics present in real-world audio 

recordings [5], [8]. 

Our evaluation methodology employed both objective and visual analysis. Quantitative 

assessment was conducted using established pitch evaluation metrics: Root Mean Square Error 

(RMSE), Mel Cepstral Distortion (MCD), and Gross Pitch Error (GPE) [9], [10]. These metrics 

enabled us to benchmark the performance of our proposed models against the original baselines. 
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The results showed that both enhancements led to substantial improvements. The enhanced 

PESTO model consistently outperformed the original across male and female voice samples, 

achieving lower error rates and demonstrating more stable pitch trajectories. Likewise, 

ESCAPE achieved the lowest RMSE, MCD, and GPE scores across different datasets, 

affirming the strength of the fusion strategy [25]. 

In addition to numerical evaluations, we visualized the predicted pitch contours over time, 

highlighting the temporal stability and fidelity of the predictions. These plots clearly 

demonstrated how the enhanced PESTO reduced erratic fluctuations compared to the original, 

and how ESCAPE maintained smoother and more coherent pitch trajectories. Special attention 

was given to the differences between male and female vocal samples, which helped explain the 

observed trends and reinforced the need for robust, generalizable models [1], [3]. 

The training process for the enhanced PESTO model utilized the MDB-stem-synth dataset, a 

musically diverse and richly annotated dataset of vocal recordings. Training was performed 

with a ResNet1d encoder architecture incorporating attention modules, using loss functions  

cross-entropy, equivariance, and shift-invariance objectives. Learning parameters like a batch 

size and learning rate were carefully configured to ensure stable convergence and optimal 

performance [5], [19], [22]. 

Overall, the proposed contributions provide effective solutions for improved monophonic pitch 

estimation, balancing accuracy, efficiency, and robustness. The enhancements to PESTO and 

the design of ESCAPE together advance the field’s capabilities, making them promising 

candidates for applications in music information retrieval, speech analysis, and expressive 

audio processing. 

 

2. Future Work 

Building on the promising results obtained through the enhanced PESTO architecture and the 

ESCAPE fusion model, several exciting avenues remain open for future research and 

development. These directions aim to further improve pitch estimation accuracy, broaden the 

application scope, and increase robustness in real-world environments. 

• Integration into Speech Synthesis Pipelines 
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One compelling direction for future work is to integrate the ESCAPE model or the enhanced 

PESTO estimator into state-of-the-art speech synthesis systems, such as vocoders or TTS (Text-

to-Speech) frameworks. Accurate and smooth pitch estimation is critical for generating natural-

sounding speech, especially in expressive or prosodically rich contexts. By serving as a high-

fidelity F0 input module, ESCAPE could help guide pitch contour generation, leading to 

improvements in speech naturalness and prosody modeling [11, 17 ]. 

• Specialization for Emotional and Expressive Speech 

While the models demonstrated robustness under various vocal characteristics, further 

enhancements could be made by tailoring the architecture specifically for emotional speech. 

This could involve training on emotion-rich corpora, adjusting the feature extraction layers to 

account for greater pitch variability, or even developing a dedicated emotion-aware pitch 

estimation algorithm. Incorporating emotion recognition features or prosodic classifiers into the 

architecture may also boost generalization across speaking styles [24, 28,]. 

• Multispeaker and Multipitch Environments 

Another promising direction is extending the current single-pitch estimation framework to 

support multipitch detection, particularly for scenarios involving polyphonic audio, ensemble 

singing, or conversational speech with speaker overlap. Future models could leverage source 

separation techniques or attention-guided tracking to isolate and estimate multiple concurrent 

F0 trajectories. This would broaden the usability of your models in music information retrieval 

and advanced dialogue systems [14, 16, 29]. 

• Incorporation of Recent Deep Learning Innovations 

To further enhance model performance, recent advancements in deep learning could be 

explored, including: 

• Transformer-based pitch modeling to better capture long-range temporal dependencies 

in audio. 

• CBAM (Convolutional Block Attention Module) or other attention mechanisms to 

refine feature selection within convolutional blocks. 

• Diffusion models or self-supervised pretraining, which could offer better 

representations of time-varying pitch contours with minimal labeled data. 
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Such modern architectures could be combined with your attention-augmented ResNet design 

to further improve performance and generalizability[15], [30]. 

• Computational Efficiency and Deployment 

Although the proposed models remain relatively lightweight, future work may explore 

efficiency optimizations to facilitate deployment in real-time or edge computing settings. 

Techniques such as model pruning, quantization, or knowledge distillation can be employed to 

reduce model size and inference time without sacrificing accuracy. These optimizations are 

essential for deploying pitch estimation models in mobile applications, voice assistants, or 

embedded systems [11,13]. 

• Broader Evaluation Framework 

To gain a deeper understanding of model behavior in diverse contexts, future evaluations could 

include: 

• Testing across a wider range of languages and accents. 

• Cross-dataset benchmarking with studio-quality, noisy, or spontaneous recordings. 

• Human listening studies, to validate the perceptual quality of pitch estimation and its 

impact on synthesized speech. 

Such evaluations would help establish the real-world applicability and performance limits of 

the proposed models. 
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Appendix A- Implementation of the SE block 

 
from functools import partial 

 

import torch 

import torch.nn as nn 

 

 

class ToeplitzLinear(nn.Conv1d): 

    def __init__(self, in_features, out_features): 

        super(ToeplitzLinear, self).__init__( 

            in_channels=1, 

            out_channels=1, 

            kernel_size=in_features+out_features-1, 

            padding=out_features-1, 

            bias=False 

        ) 

 

    def forward(self, input: torch.Tensor) -> torch.Tensor: 

        return super(ToeplitzLinear, self).forward(input.unsqueeze(-

2)).squeeze(-2) 

 

 

class SEBlock(nn.Module): 

    def __init__(self, channels, reduction=16): 

        super(SEBlock, self).__init__() 

        self.pool = nn.AdaptiveAvgPool1d(1) 

        self.fc = nn.Sequential( 

            nn.Linear(channels, channels // reduction, bias=False), 

            nn.ReLU(inplace=True), 

            nn.Linear(channels // reduction, channels, bias=False), 

            nn.Sigmoid() 

        ) 

 

    def forward(self, x): 

        # x: (batch, channels, freq_bins) 

        b, c, _ = x.size() 

        y = self.pool(x).view(b, c) 

        y = self.fc(y).view(b, c, 1) 

        return x * y.expand_as(x) 

 

class Resnet1d(nn.Module): 

    """ 

    Basic CNN similar to the one in Johannes Zeitler's report, 

    but for longer HCQT input (always stride 1 in time) 

    Still with 75 (-1) context frames, i.e. 37 frames padded to each side 

    The number of input channels, channels in the hidden layers, and output 

    dimensions (e.g. for pitch output) can be parameterized. 

    Layer normalization is only performed over frequency and channel 

dimensions, 

    not over time (in order to work with variable length input). 

    Outputs one channel with sigmoid activation. 

 

    Args (Defaults: BasicCNN by Johannes Zeitler but with 6 input 

channels): 

        n_chan_input:     Number of input channels (harmonics in HCQT) 

        n_chan_layers:    Number of channels in the hidden layers (list) 

        n_prefilt_layers: Number of repetitions of the prefiltering layer 

        residual:         If True, use residual connections for 

prefiltering (default: False) 
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        n_bins_in:        Number of input bins (12 * number of octaves) 

        n_bins_out:       Number of output bins (12 for pitch class, 72 for 

pitch, num_octaves * 12) 

        a_lrelu:          alpha parameter (slope) of LeakyReLU activation 

function 

        p_dropout:        Dropout probability 

    """ 

 

    def __init__(self, 

                 n_chan_input=1, 

                 n_chan_layers=(20, 20, 10, 1), 

                 n_prefilt_layers=1, 

                 prefilt_kernel_size=15, 

                 residual=False, 

                 n_bins_in=216, 

                 output_dim=128, 

                 activation_fn: str = "leaky", 

                 a_lrelu=0.3, 

                 p_dropout=0.2, 

                 use_attention=False): 

                  

        super(Resnet1d, self).__init__() 

 

        self.hparams = dict(n_chan_input=n_chan_input, 

                            n_chan_layers=n_chan_layers, 

                            n_prefilt_layers=n_prefilt_layers, 

                            prefilt_kernel_size=prefilt_kernel_size, 

                            residual=residual, 

                            n_bins_in=n_bins_in, 

                            output_dim=output_dim, 

                            activation_fn=activation_fn, 

                            a_lrelu=a_lrelu, 

                            p_dropout=p_dropout) 

 

        if activation_fn == "relu": 

            activation_layer = nn.ReLU 

        elif activation_fn == "silu": 

            activation_layer = nn.SiLU 

        elif activation_fn == "leaky": 

            activation_layer = partial(nn.LeakyReLU, 

negative_slope=a_lrelu) 

        else: 

            raise ValueError 

 

        n_in = n_chan_input 

        n_ch = n_chan_layers 

        if len(n_ch) < 5: 

            n_ch.append(1) 

 

        # Layer normalization over frequency and channels (harmonics of 

HCQT) 

        self.layernorm = nn.LayerNorm(normalized_shape=[n_in, n_bins_in]) 

 

        # Prefiltering 

        prefilt_padding = prefilt_kernel_size // 2 

        self.conv1 = nn.Sequential( 

            nn.Conv1d(in_channels=n_in, 

                      out_channels=n_ch[0], 

                      kernel_size=prefilt_kernel_size, 

                      padding=prefilt_padding, 

                      stride=1), 



59 | P a g e  

 

            activation_layer(), 

            nn.Dropout(p=p_dropout) 

        ) 

        self.se_block = SEBlock(n_ch[0])  # SE after first conv 

        self.n_prefilt_layers = n_prefilt_layers 

        self.prefilt_layers = nn.ModuleList(*[ 

            nn.Sequential( 

                nn.Conv1d(in_channels=n_ch[0], 

                          out_channels=n_ch[0], 

                          kernel_size=prefilt_kernel_size, 

                          padding=prefilt_padding, 

                          stride=1), 

                activation_layer(), 

                nn.Dropout(p=p_dropout) 

            ) 

            for _ in range(n_prefilt_layers-1) 

        ]) 

        self.residual = residual 

 

        conv_layers = [] 

        for i in range(len(n_chan_layers)-1): 

            conv_layers.extend([ 

                nn.Conv1d(in_channels=n_ch[i], 

                          out_channels=n_ch[i + 1], 

                          kernel_size=1, 

                          padding=0, 

                          stride=1), 

                activation_layer(), 

                nn.Dropout(p=p_dropout) 

            ]) 

        self.conv_layers = nn.Sequential(*conv_layers) 

 

        self.flatten = nn.Flatten(start_dim=1) 

        self.fc = ToeplitzLinear(n_bins_in * n_ch[-1], output_dim) 

 

        self.final_norm = nn.Softmax(dim=-1) 

 

    def forward(self, x): 

        r""" 

 

        Args: 

            x (torch.Tensor): shape (batch, channels, freq_bins) 

        """ 

        x = self.layernorm(x) 

 

        x = self.conv1(x) 

        x = self.se_block(x) 

 

        for p in range(0, self.n_prefilt_layers - 1): 

            prefilt_layer = self.prefilt_layers[p] 

            if self.residual: 

                x_new = prefilt_layer(x) 

                x = x_new + x 

            else: 

                x = prefilt_layer(x) 

 

        x = self.conv_layers(x) 

        x = self.flatten(x) 

 

        y_pred = self.fc(x) 
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        return self.final_norm(y_pred) 

Appendix B- Implementation of the softargmax 
 

 

import torch 

import torch.nn.functional as F 

 

def reduce_activations(activations: torch.Tensor, reduction: str = "alwa", 

beta: float = 1.0) -> torch.Tensor: 

    r""" 

    Args: 

        activations: tensor of probability activations, shape (batch_size, 

num_bins) 

        reduction (str): reduction method to compute pitch out of 

activations, 

            choose between "argmax", "mean", "alwa", "softargmax". 

        beta (float): sharpness for softargmax; higher beta makes it 

peakier. 

 

    Returns: 

        torch.Tensor: pitches as fractions of MIDI semitones, shape 

(batch_size) 

    """ 

    device = activations.device 

    num_bins = activations.size(1) 

    bps, r = divmod(num_bins, 128) 

    assert r == 0, "Activations should have output size 

128*bins_per_semitone" 

 

    all_pitches = torch.arange(num_bins, dtype=torch.float, 

device=device).div_(bps) 

 

    if reduction == "argmax": 

        pred = activations.argmax(dim=1) 

        return pred.float() / bps 

 

    if reduction == "mean": 

        return torch.mm(activations, all_pitches) 

 

    if reduction == "alwa":   

        center_bin = activations.argmax(dim=1, keepdim=True) 

        window = torch.arange(1, 2 * bps, device=device) - bps 

        indices = (window + center_bin).clip_(min=0, max=num_bins - 1) 

        cropped_activations = activations.gather(1, indices) 

        cropped_pitches = 

all_pitches.unsqueeze(0).expand_as(activations).gather(1, indices) 

        return (cropped_activations * cropped_pitches).sum(dim=1) / 

cropped_activations.sum(dim=1) 

 

    if reduction == "softargmax": 

        # Apply temperature-scaled softmax 

        weights = F.softmax(activations * beta, dim=1) 

        return (weights * all_pitches).sum(dim=1) 

 

    raise ValueError(f"Unknown reduction type: {reduction}") 


